Reputation:
I'm probably mis-understanding something but... I'm trying to use physically correct lighting and physically based rendering in three.js
I made a simple scene. In this case just a plane. I put a light 2 units (2 meters) above the plane. The plane is using a MeshStandardMaterial
with roughness
at .9 and metalness
at 0. The light's power
is set to 800 which if I understand correctly is 800 lumens which is equivalent to a 60 watt light bulb. I set renderer.physicallyCorrectLights = true
.
Here's the result:
That result looks nothing like a 60 watt light bulb 2 meters above a floor.
Am I doing something wrong?
'use strict';
/* global dat */
function main() {
const canvas = document.querySelector('#c');
const renderer = new THREE.WebGLRenderer({canvas: canvas});
renderer.physicallyCorrectLights = true;
const fov = 45;
const aspect = 2;
const zNear = 0.1;
const zFar = 100;
const camera = new THREE.PerspectiveCamera(fov, aspect, zNear, zFar);
camera.position.set(0, 10, 20);
camera.lookAt(0, 5, 0);
const scene = new THREE.Scene();
scene.background = new THREE.Color('black');
{
const planeSize = 40;
const planeGeo = new THREE.PlaneBufferGeometry(planeSize, planeSize);
const planeMat = new THREE.MeshStandardMaterial({
color: '#C84',
side: THREE.DoubleSide,
roughness: 0.9,
metalness: 0,
});
const mesh = new THREE.Mesh(planeGeo, planeMat);
mesh.rotation.x = Math.PI * -.5;
scene.add(mesh);
}
{
const color = 0xFFFFFF;
const intensity = 1;
const light = new THREE.PointLight(color, intensity);
light.power = 800;
light.decay = 2;
light.distance = Infinity;
light.position.set(0, 2, 0);
scene.add(light);
const helper = new THREE.PointLightHelper(light);
scene.add(helper);
}
function resizeRendererToDisplaySize(renderer) {
const canvas = renderer.domElement;
const width = canvas.clientWidth;
const height = canvas.clientHeight;
const needResize = canvas.width !== width || canvas.height !== height;
if (needResize) {
renderer.setSize(width, height, false);
}
return needResize;
}
function render() {
if (resizeRendererToDisplaySize(renderer)) {
const canvas = renderer.domElement;
camera.aspect = canvas.clientWidth / canvas.clientHeight;
camera.updateProjectionMatrix();
}
renderer.render(scene, camera);
}
render();
window.onresize = render;
}
main();
html, body {
margin: 0;
height: 100%;
}
#c {
width: 100%;
height: 100%;
display: block;
}
<script src=" https://cdnjs.cloudflare.com/ajax/libs/three.js/96/three.min.js"></script>
<canvas id="c"></canvas>
Upvotes: 2
Views: 5528
Reputation:
When doing physical scenes you have to take exposure (f-stop) settings into account. I can't find a dedicated settings for the camera to allow this (which perhaps would be a natural place to find it), but there is an exposure setting for the renderer itself -
You could play around with the toneMappingExposure
settings on the renderer to find a good value, for example:
renderer.toneMappingExposure = Math.pow(0.7, 5.0); // -> exposure: 0.168
and for example a more real-world value for power:
light.power = 740; // GE Lumens @ 60W incandescent
A technical consideration: Watts cannot be directly translated into Lumens simply because different brands produce different Lumens values at the same Wattage; they can actually vary roughly between 400-1000 Lumens in the case of 60W incandescent lights (GE operates with 740 or so). But that's a side-point.. :)
'use strict';
/* global dat */
function main() {
const canvas = document.querySelector('#c');
const renderer = new THREE.WebGLRenderer({canvas: canvas});
renderer.physicallyCorrectLights = true;
renderer.toneMappingExposure = Math.pow(0.7, 5.0);
const fov = 45;
const aspect = 2;
const zNear = 0.1;
const zFar = 100;
const camera = new THREE.PerspectiveCamera(fov, aspect, zNear, zFar);
camera.position.set(0, 10, 20);
camera.lookAt(0, 5, 0);
const scene = new THREE.Scene();
scene.background = new THREE.Color('black');
{
const planeSize = 40;
const planeGeo = new THREE.PlaneBufferGeometry(planeSize, planeSize);
const planeMat = new THREE.MeshStandardMaterial({
color: '#C84',
side: THREE.DoubleSide,
roughness: 0.9,
metalness: 0,
});
const mesh = new THREE.Mesh(planeGeo, planeMat);
mesh.rotation.x = Math.PI * -.5;
scene.add(mesh);
}
{
const color = 0xFFFFFF;
const intensity = 1;
const light = new THREE.PointLight(color, intensity);
light.power = 740; // GE Lumens @ 60W incade.
light.decay = 2;
light.distance = Infinity;
light.position.set(0, 2, 0);
scene.add(light);
const helper = new THREE.PointLightHelper(light);
scene.add(helper);
}
function resizeRendererToDisplaySize(renderer) {
const canvas = renderer.domElement;
const width = canvas.clientWidth;
const height = canvas.clientHeight;
const needResize = canvas.width !== width || canvas.height !== height;
if (needResize) {
renderer.setSize(width, height, false);
}
return needResize;
}
function render() {
if (resizeRendererToDisplaySize(renderer)) {
const canvas = renderer.domElement;
camera.aspect = canvas.clientWidth / canvas.clientHeight;
camera.updateProjectionMatrix();
}
renderer.render(scene, camera);
}
render();
window.onresize = render;
}
main();
html, body {
margin: 0;
height: 100%;
}
#c {
width: 100%;
height: 100%;
display: block;
}
<script src=" https://cdnjs.cloudflare.com/ajax/libs/three.js/96/three.min.js"></script>
<canvas id="c"></canvas>
Upvotes: 4