Reputation: 1793
I have a table in R that looks like this:
ID Year Source_1999 Source_2000 Source_2001 Source_2002
1 1999 ABC ABC ABC ABC
2 2001 ABC BBB XYZ NA
3 2000 NA ABC BBB BBB
4 2001 NA NA NA NA
The table has many rows, and quite a lot of "Source_" columns - probably about 50.
I need to make a new column that states whether any of the source columns contain NA, BUT I only want to check the years that are greater or equal to the year in the "Year" column. So my new table would look like this:
ID Year Source_1999 Source_2000 Source_2001 Source_2002 NA_check
1 1999 ABC ABC ABC ABC No
2 2001 ABC BBB XYZ NA Yes
3 2000 NA ABC BBB BBB No
4 2001 NA NA NA NA Yes
(the values in the new "NA" column can be any kind of binary indicator)
I have tried going through each year in turn, and using an if loop with the function is.na(df[,start_year:finish_year]), but this doesn't seem to work, and isn't very efficient.
In the future I might want to check other columns in this manner i.e. counting particular values, or summing the row, but with the starting column specified by this Year column, so am hoping I can adapt any answers to do this.
Any help much appreciated. Thanks
Upvotes: 1
Views: 50
Reputation: 887128
Here is a base R
option with apply
, to loop through the rows, get the index of first non-NA element, subset the row elements from that element, check for NA with anyNA
and create the 'No/Yes' values based on that
df1$any_NA <- apply(df1[-(1:2)], 1, function(x)
c("No", "Yes")[anyNA(x[pmax(which(!is.na(x))[1], 1,
na.rm = TRUE):length(x)]) + 1])
df1$any_NA
#[1] "No" "Yes" "No" "Yes"
df1 <- structure(list(ID = 1:4, Year = c(1999L, 2001L, 2000L, 2001L),
Source_1999 = c("ABC", "ABC", NA, NA), Source_2000 = c("ABC",
"BBB", "ABC", NA), Source_2001 = c("ABC", "XYZ", "BBB", NA
), Source_2002 = c("ABC", NA, "BBB", NA)), class = "data.frame", row.names = c(NA,
-4L))
Upvotes: 0
Reputation: 25225
Here are two data.table
approaches:
Not necessarily the fastest:
dt[, NA_check := Reduce(`|`, lapply(paste0("Source_", 1999:2002),
function(x) x >= paste0("Source_", Year) & is.na(get(x))))]
Converting into a long format:
checkNA <- melt(dt, id.vars=c("ID", "Year"), variable.factor=FALSE)[,
anyNA(value[variable >= paste0("Source_", Year)]),
by=.(ID, Year)]
dt[checkNA , on=.(ID, Year), NA_check := V1]
data:
library(data.table)
dt <- fread("ID Year Source_1999 Source_2000 Source_2001 Source_2002
1 1999 ABC ABC ABC ABC
2 2001 ABC BBB XYZ NA
3 2000 NA ABC BBB BBB
4 2001 NA NA NA NA")
Upvotes: 1
Reputation: 7724
That's a nice task for gather
and spread
from tidyr
together with group_by
, mutate
from dplyr
and parse_number
from readr
:
library(tidyverse)
mydata %>%
gather(source, value, starts_with("Source")) %>%
mutate(source_year = parse_number(source)) %>%
group_by(ID, Year) %>%
mutate(any_na = anyNA(value[Year <= source_year])) %>%
select(-source_year) %>%
spread(source, value)
# A tibble: 4 x 7
# Groups: ID, Year [4]
# ID Year any_na Source_1999 Source_2000 Source_2001 Source_2002
# <int> <int> <lgl> <chr> <chr> <chr> <chr>
# 1 1 1999 FALSE ABC ABC ABC ABC
# 2 2 2001 TRUE ABC BBB XYZ NA
# 3 3 2000 FALSE NA ABC BBB BBB
# 4 4 2001 TRUE NA NA NA NA
Step-by-step
First turn your data from wide format into a long and extract the year of the source column.
mydata <- mydata %>%
gather(source, value, starts_with("Source")) %>%
mutate(source_year = parse_number(source))
mydata
# A tibble: 16 x 5
# ID Year source value source_year
# <int> <int> <chr> <chr> <dbl>
# 1 1 1999 Source_1999 ABC 1999
# 2 2 2001 Source_1999 ABC 1999
# 3 3 2000 Source_1999 NA 1999
# 4 4 2001 Source_1999 NA 1999
# 5 1 1999 Source_2000 ABC 2000
# ...
Then group by ID and year, such that the following calculations are applied in these groups. filter the value by the source_Years whichs are greater or equal to the group year and check whether there are any NA
's
mydata <- mydata %>%
group_by(ID, Year) %>%
mutate(any_na = anyNA(value[Year <= source_year]))
mydata
# A tibble: 16 x 6
# Groups: ID, Year [4]
# ID Year source value source_year any_na
# <int> <int> <chr> <chr> <dbl> <lgl>
# 1 1 1999 Source_1999 ABC 1999 FALSE
# 2 2 2001 Source_1999 ABC 1999 TRUE
# 3 3 2000 Source_1999 NA 1999 FALSE
# 4 4 2001 Source_1999 NA 1999 TRUE
# 5 1 1999 Source_2000 ABC 2000 FALSE
# ...
Finally drop the yource_year column as it's not needed anymore and transform the data from long to wide format:
mydata <- mydata %>%
select(-source_year) %>%
spread(source, value)
Data
mydata <- tibble(ID = 1:4,
Year = c(1999L, 2001L, 2000L, 2001L),
Source_1999 = c("ABC", "ABC", NA, NA),
Source_2000 = c("ABC", "BBB", "ABC", NA),
Source_2001 = c("ABC", "XYZ", "BBB", NA),
Source_2002 = c("ABC", NA, "BBB", NA))
Upvotes: 2