Reputation: 77
Is there a better way than
DT <- DT[,!apply(DT,2,function(x) all(is.na(x))), with = FALSE]
to subset with data table only on columns which are not entirely filled with NA
s?
Thanks
Upvotes: 3
Views: 602
Reputation: 34703
The basic idea is to find the all-NA
columns with something like:
na_idx = sapply(DT, function(x) all(is.na(x)))
To apply this to subsetting your table, the answer depends on whether you'd like to remove these columns from your table, or whether you plan to create a separate, derivative table;
In the former case, you should set these columns to NULL
:
DT[ , which(sapply(DT, function(x) all(is.na(x)))) := NULL]
In the latter case, there are several options:
idx = sapply(DT, function(x) !all(is.na(x)))
DT = DT[ , idx, with = FALSE] # or DT = DT[ , ..idx]
DT = DT[ , lapply(.SD, function(x) if (all(is.na(x))) NULL else x)]
apply
and colSums
approaches will involve matrix conversion which is likely to be inefficient.
Here's a benchmark of the cases laid out here and by @DavidArenburg in the comments above:
method time
1: which := NULL 1.434
2: for set NULL 3.432
3: lapply(.SD) 16.041
4: ..idx 10.343
5: with FALSE 4.896
Code:
library(data.table)
NN = 1e7
kk = 50
n_na = 5
set.seed(021349)
DT = setDT(replicate(kk, rnorm(NN), simplify = FALSE))
DT[ , (sample(kk, n_na)) := NA_real_]
DT2 = copy(DT)
t1 = system.time(
DT2[ , which(sapply(DT2, function(x) all(is.na(x)))) := NULL]
)
rm(DT2)
DT2 = copy(DT)
t2 = system.time({
for (col in copy(names(DT2)))
if (all(is.na(DT2[[col]]))) set(DT2, , col, NULL)
})
rm(DT2)
DT2 = copy(DT)
t3 = system.time({
DT3 = DT2[ , lapply(.SD, function(x) if (all(is.na(x))) NULL else x)]
})
rm(DT3)
t4 = system.time({
idx = sapply(DT2, function(x) !all(is.na(x)))
DT3 = DT2[ , ..idx]
})
rm(DT3)
t5 = system.time({
idx = sapply(DT2, function(x) !all(is.na(x)))
DT3 = DT2[ , idx, with = FALSE]
})
data.table(
method = c('which := NULL', 'for set NULL',
'lapply(.SD)', '..idx', 'with FALSE'),
time = sapply(list(t1, t2, t3, t4, t5), `[`, 'elapsed')
)
Upvotes: 7