Reputation: 2270
I have the following two dataframes (samples). I'd like to know which companies had their sales changed between the two dataframes. For example, AAPL is different in the second dataframe.
Sales 52W High 52W Low
Root
A 4.81B -0.1072 0.1082
AA 12.81B -0.3124 0.0709
AABA 266.05M -0.2038 0.0437
AAL 43.52B -0.3285 0.1131
AAN 3.61B -0.0208 0.4716
AAOI 321.80M -0.5196 0.5195
AAP 9.42B -0.0153 1.1190
AAPL 255.27B -0.0101 0.5210
AAXN 385.40M -0.1005 2.3432
ABB 35.52B -0.1870 0.0987
Sales 52W High 52W Low
Root
A 4.81B -0.1019 0.1149
AA 12.81B -0.3527 0.0082
AABA 266.05M -0.2212 0.0208
AAL 43.52B -0.3487 0.0797
AAN 3.61B -0.0196 0.4733
AAOI 321.80M -0.5478 0.4303
AAP 9.42B -0.0216 1.1218
AAPL 243.89B -0.0286 0.4957
AAXN 385.40M -0.0806 2.4171
ABB 35.52B -0.1838 0.1030
Upvotes: 1
Views: 92
Reputation: 323226
This you can using ne
(not equal)
df1.Sales.ne(df2.Sales)# the one mask as True is the different
Out[482]:
Root
A False
AA False
AABA False
AAL False
AAN False
AAOI False
AAP False
AAPL True
AAXN False
ABB False
Name: Sales, dtype: bool
Upvotes: 3