Reputation: 1193
I have these two dataframes, df1
,df2
.
df1:
dateTime userId session
2018-08-30 02:20:19 2233 1
2018-08-30 05:32:10 1933 1
2018-08-30 09:10:39 2233 2
2018-08-30 10:26:59 2233 3
2018-08-30 11:56:25 4459 1
2018-08-30 12:30:55 4459 1
df2:
clickTime userId session clickId
2018-08-30 02:21:09 2233 1987
2018-08-30 02:23:19 2233 1988
2018-08-30 02:24:00 2233 1989
2018-08-30 02:32:09 2233 1990
2018-08-30 05:33:10 1933 2009
2018-08-30 05:35:19 1933 2010
2018-08-30 05:36:59 1933 2011
2018-08-30 11:57:25 4459 3012
2018-08-30 11:58:55 4459 3013
I want to merge the two dataframes on userId
and also the time-range columns, which falls within say a range of 10 mins. of df1
.
So my dataframe that I want is something like this:
dateTime userId session clickTime clickId
2018-08-30 02:20:19 2233 1 2018-08-30 02:21:09 1987
2018-08-30 02:20:19 2233 1 2018-08-30 02:23:19 1988
2018-08-30 02:20:19 2233 1 2018-08-30 02:21:09 1989
2018-08-30 02:20:19 2233 1 2018-08-30 02:21:09 1990
So I want them for each user, dataframe should look like this, for each userId
I want this dataframe. Is it possible?
So its like I want to merge df1
and df2
on userId
as well as clickTime
of df2
should lie with a time range of say 10-15mins of dateTime
column of df1
.
Upvotes: 0
Views: 113
Reputation: 294488
IIUC: Use pandas.merge_asof
pd.merge_asof(
df1, df2,
left_on='dateTime',
right_on='clickTime',
by='userId',
direction='nearest'
)
dateTime userId session clickTime clickId
0 2018-08-30 02:20:19 2233 1 2018-08-30 02:21:09 1987
1 2018-08-30 05:32:10 1933 1 2018-08-30 05:33:10 2009
2 2018-08-30 09:10:39 2233 2 2018-08-30 02:32:09 1990
3 2018-08-30 10:26:59 2233 3 2018-08-30 02:32:09 1990
4 2018-08-30 11:56:25 4459 1 2018-08-30 11:57:25 3012
5 2018-08-30 12:30:55 4459 1 2018-08-30 11:58:55 3013
You can specify a tolerance on how far away to look
pd.merge_asof(
df1, df2,
left_on='dateTime',
right_on='clickTime',
by='userId',
direction='nearest',
tolerance=pd.Timedelta(15, unit='m')
)
dateTime userId session clickTime clickId
0 2018-08-30 02:20:19 2233 1 2018-08-30 02:21:09 1987.0
1 2018-08-30 05:32:10 1933 1 2018-08-30 05:33:10 2009.0
2 2018-08-30 09:10:39 2233 2 NaT NaN
3 2018-08-30 10:26:59 2233 3 NaT NaN
4 2018-08-30 11:56:25 4459 1 2018-08-30 11:57:25 3012.0
5 2018-08-30 12:30:55 4459 1 NaT NaN
Upvotes: 1