Reputation: 27
Lets say I was provided a multiple linear regression model such as:
y = B0 + B1x1 + B2x2
And given the intercept/coef values of this model:
B0 = 0.005275169B1
B1 = 0.067347131
B2 = -0.207909721
BUT.. I don't have the original dataset (x/y values) that generated that model. Is there anyway to generate a new dataset, then feed it into lm() where resulting lm()$coef call would then spit out the same BO, B1, B2 values noted above? In summary, I want to generate a dataset that when fed into lm() produces a model with 100% exact same coef as above.
Upvotes: 0
Views: 252
Reputation: 31452
I think you are looking for the model
field in the lm object. Here's a reproducible example
fit <- lm(mpg ~ disp, data = mtcars)
newdata <- fit$model
# mpg disp
# Mazda RX4 21.0 160.0
# Mazda RX4 Wag 21.0 160.0
# Datsun 710 22.8 108.0
# Hornet 4 Drive 21.4 258.0
# Hornet Sportabout 18.7 360.0
# Valiant 18.1 225.0
# ...
Upvotes: 0
Reputation: 50668
To expand on my comment above, here is an example using the mtcars
dataset, where we fit a linear model of the form mpg = beta0 + beta1 * disp
.
fit <- lm(mpg ~ disp, data = mtcars)
summary(fit)
#
#Call:
#lm(formula = mpg ~ disp, data = mtcars)
#
#Residuals:
# Min 1Q Median 3Q Max
#-4.8922 -2.2022 -0.9631 1.6272 7.2305
#
#Coefficients:
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 29.599855 1.229720 24.070 < 2e-16 ***
#disp -0.041215 0.004712 -8.747 9.38e-10 ***
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
#Residual standard error: 3.251 on 30 degrees of freedom
#Multiple R-squared: 0.7183, Adjusted R-squared: 0.709
#F-statistic: 76.51 on 1 and 30 DF, p-value: 9.38e-10
We generate some new data for disp
and use the model coefficients to predict a response for mpg
.
df <- data.frame(disp = seq(1, 1000, length.out = 20))
df$mpg <- predict(fit, newdata = df)
We now fit the same model to the new data.
fit.new <- lm(mpg ~ disp, data = df)
#
#Call:
#lm(formula = mpg ~ disp, data = df)
#
#Residuals:
# Min 1Q Median 3Q Max
#-1.720e-14 -3.095e-15 1.302e-15 3.618e-15 5.719e-15
#
#Coefficients:
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 2.960e+01 2.235e-15 1.325e+16 <2e-16 ***
#disp -4.122e-02 3.819e-18 -1.079e+16 <2e-16 ***
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
#Residual standard error: 5.178e-15 on 18 degrees of freedom
#Multiple R-squared: 1, Adjusted R-squared: 1
#F-statistic: 1.165e+32 on 1 and 18 DF, p-value: < 2.2e-16
#
#Warning message:
#In summary.lm(fit.new) : essentially perfect fit: summary may be unreliable
Notice how estimates are identical (but standard deviations and t statistics are not!). Also notice the warning at the bottom of the second model fit.
If you have coefficients beta0
and beta1
simply calculate the response as
beta0 <- coef(fit)[1]
beta1 <- coef(fit)[2]
df <- data.frame(disp = seq(1, 1000, length.out = 20))
df$mpg <- beta0 + df$disp * beta1
Upvotes: 1