Reputation: 14408
I am trying with below code:
import tensorflow as tf
from keras.layers import Input, Dense
from keras.models import Model, Sequential
from keras.layers import Conv2D, Concatenate
from keras.utils.vis_utils import plot_model
if __name__ == '__main__':
imgRows = imgCols = 28
print ("ImgRow and imgCols " , imgRows, imgCols)
inputLayer = Input(shape=( 1,28,28))
conv1 = Conv2D(64,(3,3),strides=1, padding="same", activation='relu') (inputLayer)
#Residual 1
skip = Conv2D(128, (1,1), strides=1, padding="same", activation='relu') (conv1)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (skip)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (conv1)
r1= Concatenate([skip, conv1])
#residual 2
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (r1)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1= Concatenate([r1, conv1])
# Residual 3
skip = Conv2D(256, (1,1), strides=1, padding="same", activation='relu') (conv1)
conv1 = Conv2D(256, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1 = Conv2D(256, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1= Concatenate([skip, conv1])
out = Conv2D(1, (1,1), strides=1, padding="same", activation='sigmoid') (conv1)
#model = Sequential()
#model.add (inputLayer)
#model.add ( conv1)
model = Model(input=inputLayer, output=conv1)
model.compile(optimizer=Nadam(lr=1e-5), loss="mean_square_error")
plot_model (model, to_file="./keestu_model.png", show_shapes=True)
I am getting the below error:
Error Message is:
ValueError: Layer conv2d_5 was called with an input that isn't a
symbolic tensor. Received type: <class 'keras.layers.merge.Concatenate'>.
Full input: [<keras.layers.merge.Concatenate object at 0x7fd543841590>].
All inputs to the layer should be tensors.
Question?:
The error message is very clear to me that the layer 5 expects its input as tensor object not an concatenate object. But how can i fix it ?
Upvotes: 1
Views: 75
Reputation: 11225
That is because Concatenate
is a layer class with two API versions:
Concatenate()([tensor1, tensor2])
creates a new instance of concatenate and applies on the given tensors. This is the standard functional API style.concatenate([tensor1, tensor2])
will achieve same thing but create an implicit instance for you. From the documentation:
keras.layers.concatenate(inputs, axis=-1): Functional interface to the Concatenate layer.
By the way all merge layers have this dual interface for convenience.
Upvotes: 2