Reputation: 630
I have a pandas dataframe that looks like this:
**real I SI weights**
0 1 3 0.3
0 2 4 0.2
0 1 3 0.5
0 1 5 0.5
1 2 5 0.3
1 2 4 0.2
1 1 3 0.5
I need to divide it by "real", then I need to do the following:
given a value of I, consider each value of SI and add the total weight. At the end, I should have, for each realization, something like that:
real = 0:
I = 1 SI = 3 weight = 0.8
SI = 5 weight = 0.5
I = 2 SI = 4 weight = 0.2
real = 1:
I = 1 SI = 3 weight = 0.5
I = 2 SI = 5 weight = 0.3
SI = 4 weight = 0.2
The idea is then to plot, for each value of I and real, on the x axis the values of SI and on the y axis the relative total weight (normalized to 1).
What I tried to do was this:
name = ['I', 'SI','weight', 'real']
Location = 'Simulationsdata/prova.csv'
df = pd.read_csv(Location, names = name,sep='\t',encoding='latin1')
results = df.groupby(['I', 'real', 'SI']).weight.sum()
When I print results, I have the table I want, but now I don`t know how to make a plot as I wanted, because I do not know how to get the SI values...
Upvotes: 0
Views: 307
Reputation: 4513
Once you do this:
results = df.groupby(['real', 'I', 'SI'])['weights'].sum()
You can get the values of 'real'
, 'I'
and 'SI'
stored in the dataframe by using
results.index.get_level_values(0)
Int64Index([0, 0, 0, 1, 1, 1], dtype='int64', name='real'
results.index.get_level_values(1)
Int64Index([1, 1, 2, 1, 2, 2], dtype='int64', name=' I')
results.index.get_level_values(2)
Int64Index([3, 5, 4, 3, 4, 5], dtype='int64', name=' SI')
You can iterate over those to get the plots you want. For example:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2)
for idx1, i in enumerate(results.index.get_level_values(0).unique()):
for idx2, j in enumerate(results.index.get_level_values(1).unique()):
axes[idx1, idx2].plot(results.loc[i, j], 'o')
axes[idx1, idx2].set_xlabel('SI')
axes[idx1, idx2].set_ylabel('weights')
axes[idx1, idx2].set_xlim([0, 6])
axes[idx1, idx2].set_ylim([0, 1])
axes[idx1, idx2].set_title('real: {} I: {}'.format(i, j))
plt.tight_layout()
plt.show()
which gives
Upvotes: 1