Reputation: 13
I have this DataFrame:
dic = {'users' : ['A','A','B','A','A','B','A','A','A','A','A','B','A'],
'product' : [1,1,2,2,1,2,1,2,1,1,2,1,1],
'action' : ['see', 'see', 'see', 'see', 'buy', 'buy', 'see', 'see', 'see', 'see', 'buy', 'buy', 'buy']
}
df = pd.DataFrame(dic, columns=dic.keys())
df
users product action
0 A 1 see
1 A 1 see
2 B 2 see
3 A 2 see
4 A 1 buy
5 B 2 buy
6 A 1 see
7 A 2 see
8 A 1 see
9 A 1 see
10 A 2 buy
11 B 1 buy
12 A 1 buy
What I need is a column that count How many times did each user see a product before buying it.
The result should be something like this:
dic = {'users' : ['A','A','B','A','A','B','A','A','A','A','A','B','A'],
'product' : [1,1,2,2,1,2,1,2,1,1,2,1,1],
'action' : ['see', 'see', 'see', 'see', 'buy', 'buy', 'see', 'see', 'see', 'see', 'buy', 'buy', 'buy'],
'see_before_buy' : [1,2,1,1,2,1,1,2,2,3,2,0,3]
}
users product action see_before_buy
0 A 1 see 1
1 A 1 see 2
2 B 2 see 1
3 A 2 see 1
4 A 1 buy 2
5 B 2 buy 1
6 A 1 see 1
7 A 2 see 2
8 A 1 see 2
9 A 1 see 3
10 A 2 buy 2
11 B 1 buy 0
12 A 1 buy 3
Could somebody help me?
Upvotes: 1
Views: 1419
Reputation: 3018
One approach is :
First get all the users and products
users=list(df.users.unique())
products=list(df.products.unique())
Create a dictionary for user product combination that keeps track of which product each user has seen
see_dict={users[i]:{products[j]:0 for j in range(len(products))} for i in range(len(users))}
#{'A': {1: 0, 2: 0}, 'B': {1: 0, 2: 0}}
Initialize empty column
df["see_before_buy"]=None
Now for each row, if it is a see action, update the dictionary (increment) and assign the value. If it is a buy action, only assign the value and reset the counter
for i in range(len(df)):
user=df.loc[i,"users"]
product=df.loc[i,"products"]
if(df.loc[i,"action"]=="see"): #if the action is see
see_dict[user][product]+=1 #increment the see dictionary
df.loc[i,"see_before_buy"]=see_dict[user][product] #assign this value for this row
else: #buy action
df.loc[i,"see_before_buy"]=see_dict[user][product] #assign the current value
see_dict[user][product]=0 #reset the counter
Output
users products action see_before_buy
0 A 1 see 1
1 A 1 see 2
2 B 2 see 1
3 A 2 see 1
4 A 1 buy 2
5 B 2 buy 1
6 A 1 see 1
7 A 2 see 2
8 A 1 see 2
9 A 1 see 3
10 A 2 buy 2
11 B 1 buy 0
12 A 1 buy 3
Upvotes: 1
Reputation: 323226
You may need create a addtional key for groupby
, by using cumsum
after shfit
addkey=df.groupby(['user','#product']).action.apply(lambda x : x.eq('buy').shift().fillna(0).cumsum())
df['seebefore']=df.action.eq('see').groupby([df.user,df['#product'],addkey]).cumsum()
df
Out[131]:
index user #product action seebefore
0 0 A 1 see 1.0
1 1 A 1 see 2.0
2 2 B 2 see 1.0
3 3 A 2 see 1.0
4 4 A 1 buy 2.0
5 5 B 2 buy 1.0
6 6 A 1 see 1.0
7 7 A 2 see 2.0
8 8 A 1 see 2.0
9 9 A 1 see 3.0
10 10 A 2 buy 2.0
11 11 B 1 buy 0.0
12 12 A 1 buy 3.0
Upvotes: 4