Reputation: 337
I am trying to calculate the integral of a function in Matlab and Mathematica that the software cannot do symbolically.
Here is my MatLab code so far, but I understand it may not be very helpful as is.
f = @(t) asin(0.5*sin(t));
a = @(t) sin(t);
F = int(f,t) % Matlab can't do this
F =
int(asin(sin(t)/2), t)
A = int(a,t) % This works
A =
-cos(t)
dt = 1/(N-1); % some small number
for i=1:N
F(i) = integral(f,(i-1)*dt,i*dt);
A(i) = integral(a,(i-1)*dt,i*dt);
end
Both of the calculations in the for loop give a rough approximation of f
or a
not their integrals after multiplying by dt
.
On the math stack-exchange I found a question that derives a finite difference like method for the integral at a point. However, when I did the calculation in Matlab it output a scaled down version of f
which was evident after plotting (see above for what I mean by scaled down). I think that's because for smaller intervals the integral basically approximates the function to varying degrees of accuracy (again see above).
I am trying to get either a symbolic equation for the integral, or an approximation of the integral of the function at each location.
So my question is then if I have a function f that MatLab and Mathematica cannot easily take the integral of
int
,integral
,trapz
)or
Upvotes: 1
Views: 692
Reputation: 337
The accepted answer in general is by far the best method I would say but if certain restrictions on your functions are allowable then there is a second method.
For two functions f
and g
see below
T = 1; % Period
NT = 1; % Number of periods
dt = 0.01; % time interval
time = 0:dt:NT*T; % time
syms t
x = K*sin(2*pi*t+B); % edit as appropriate
% f = A/tanh(K)*tanh(K*sin(2*pi*t+p))
% g = A/asin(K)*asin(K*sin(2*pi*t+p))
formulas found here
f = A1/tanh(K1)*(2^(2*1)-1)*2^(2*1)*bernoulli(2*1)/factorial(2*1)*x^(2*1-1);
% |K1|<pi/2
g = A2/asin(K2)*factorial(2*0)/(2^(2*0)*factorial(0)^2*(2*0+1))*x^(2*0+1);
% |K2|<1
there are no such limitations in the accepted answer
N = 60;
for k=2:N
a1 = (2^(2*k)-1)*2^(2*k)*bernoulli(2*k)/factorial(2*k);
f = f + A1/tanh(K1)*a1*x^(2*k-1);
a2 = factorial(2*k)/(2^(2*k)*factorial(k)^2*(2*k+1));
g = g + A2/asin(K2)*a*x^(2*k+1);
end
MATLAB can calculate sin^n(t)
for n being an integer.
F = int(f,t);
phi = double(subs(F,t,time));
G = int(g,t);
psi = double(subs(G,t,time));
Upvotes: 0
Reputation: 2699
Your code is nearly fine it's just that
for i=1:N
F(i) = integral(f,0,i*dt);
end
You could also do
F(1)=integral(f,0,dt)
for i=2:N
F(i) = F(i-1)+integral(f,(i-1)*dt,i*dt);
end
Second option is surely more efficient
Because the primitive is really F(x)=int(f(x), 0, x) (0 defines a certain constant ) and for sufficiently small dx you have shown that f(x)=int(f(x), x,x+dx)/dx i. You have proven that MATLAB intégral function does its job.
For example let's take = the function above will compute if you wish to compute just replace 0 above by the constant a
you like.
now and so you should get F
containing a discretization of
Upvotes: 1