qing zhangqing
qing zhangqing

Reputation: 401

Create three new Columns with Pandas DataFrame

I have a dataframe below and try to create three new columns greater, less and count. the condition is to count how many value is greater/less than mean and sum them.

df = 
            APPL       Std_1       Std_2       Std_3          Mean
       0   ACCMGR      106.8754    130.1600    107.1861    114.750510
       1   ACCOUNTS    121.7034    113.4927    114.5482    116.581458
       2   AUTH        116.8585    112.4487    115.2700    114.859050

def make_count(comp_cols, mean_col):
    count_d = {'greater': 0, 'less': 0}
    for col in comp_cols:
        if col > mean_col:
            count_d['greater'] += 1
        elif col < mean_col:
            count_d['less'] += 1
    return count_d['greater'], count_d['less'], (count_d['greater'] + count_d['less'])


def apply_make_count(df):
    a,b,c,*d= df.apply(lambda row: make_count([row['Std_1'], row['Std_2'], row['Std_3']], row['Mean of Std']), axis=1)
    df['greater'],df['less'],df['count']=a,b,c

apply_make_count(df)

But I got error shows:

13     df['greater'],df['less'],df['count']=list(zip(a,b,c))


ValueError: Length of values does not match length of index

Output I want to be

 df = 
    APPL       Std_1       Std_2       Std_3      Mean  greater less    count
0   ACCMGR      106.8754    130.1600    107.1861    114.750510        1    2        3
1   ACCOUNTS    121.7034    113.4927    114.5482    116.581458        1    2        3
2   AUTH        116.8585    112.4487    115.2700    114.859050        2    1        3

Upvotes: 0

Views: 230

Answers (2)

Vaishali
Vaishali

Reputation: 38425

Try

df['greater'] = (df.iloc[:, 1:4].values > df[['Mean']].values).sum(axis=1)

df['less'] = (df.iloc[:, 1:4].values < df[['Mean']].values).sum(axis=1)

df['count'] = df.iloc[:, 1:4].count(1)


    APPL        Std_1       Std_2       Std_3       Mean       greater  less    count
0   ACCMGR      106.8754    130.1600    107.1861    114.750510  1       2       3
1   ACCOUNTS    121.7034    113.4927    114.5482    116.581458  1       2       3
2   AUTH        116.8585    112.4487    115.2700    114.859050  2       1       3

Upvotes: 1

rafaelc
rafaelc

Reputation: 59304

Seems like you need simply

sub_df = df[['Std_1', 'Std_2', 'Std_3']]

df['greater'] = sub_df.gt(df.Mean.values).sum(1) # same as (sub_df > df.Mean.values).sum(1)
df['less']    = sub_df.lt(df.Mean.values).sum(1)
df['count']   = sub_df.count(1)


    APPL        Std_1       Std_2       Std_3       Mean        greater less   count
0   ACCMGR      106.8754    130.1600    107.1861    114.750510  1       2      3
1   ACCOUNTS    121.7034    113.4927    114.5482    116.581458  1       2      3
2   AUTH        116.8585    112.4487    115.2700    114.859050  2       1      3

Upvotes: 1

Related Questions