Moose Drool
Moose Drool

Reputation: 125

Yearly summations and monthly averages with Pandas

I have a set of data that is indexed by dates. Is there an easy way to obtain yearly totals and monthly averages from this data set?

                       a       b                  c              d          e
Statement Date                                                                  
2003-12-29         655.0   54.51           0.083221            0.0       4.70   
2004-01-28         978.0   82.69           0.084550            0.0       4.70   
2004-02-25         905.0   78.58           0.086829            0.0       4.70   
2004-03-29        1099.0   95.90           0.087261            0.0       4.70   
2004-04-28        1070.0   93.88           0.087738            0.0       4.70   
2004-05-26         656.0   57.99           0.088399            0.0       4.70   
2004-06-28         527.0   43.92           0.083340            0.0       4.70   
2004-07-28         399.0   32.79           0.082180            0.0       4.70   
2004-08-27         359.0   30.53           0.085042            0.0       4.70   
2004-09-28         381.0   34.76           0.091234            0.0       4.70   
2004-10-26         471.0   45.25           0.096072            0.0       4.70   
2004-11-24         967.0   85.99           0.088925            0.0       4.70   
2004-12-28        1175.0  101.49           0.086374            0.0       4.70   
2005-01-27         849.0   80.78           0.095147            0.0       4.70   
2005-02-24         641.0   61.24           0.095538            0.0       4.70   
2005-03-29         821.0   77.10           0.093910            0.0       4.70   
2005-04-27         647.0   64.49           0.099675            0.0       4.70   
2005-05-26         514.0   49.54           0.096381            0.0       4.70   
2005-06-28         411.0   39.78           0.096788            0.0       4.70   
2005-07-27         411.0   39.70           0.096594            0.0       4.70   
2005-08-29         834.0   83.20           0.099760            0.0       4.70   
2005-09-28         589.0   59.67           0.101307            0.0       4.70   
2005-10-26         476.0   52.29           0.109853            0.0       4.70   
2005-11-28         703.0   77.26           0.109900            0.0       4.70   
2005-12-28         758.0   90.35           0.119195            0.0       4.70   
2006-01-27         668.0   71.12           0.106467           99.0      10.54   
2006-02-24         830.0   88.17           0.106229           13.0       4.70   
2006-03-29         859.0   92.09           0.107206            0.0       4.70   
2006-04-26         557.0   59.41           0.106661            2.0       4.70   
2006-05-26         732.0   76.88           0.105027           27.0       4.70   

I would like to create annual totals of column a as well as create an average monthly usage (i.e. average column a values from January of 2004, 2005, and 2006). I was trying to use pandas grouper but couldn't get that to work. It would be nice to output the new values to a new dataframe if possible. Any help is appreciated.

Please let me know if anything is unclear

Upvotes: 0

Views: 1971

Answers (1)

jezrael
jezrael

Reputation: 862771

I think need ordered CategoricalIndex for correct ordering in output with DatetimeIndex.month_name or DatetimeIndex.strftime with aggregate mean:

cats = ['January','February','March','April','May','June','July','August',
          'September','October','November','December']

idx = pd.CategoricalIndex(df.index.month_name(), categories=cats, ordered=True)
#alternative solution
#idx = pd.CategoricalIndex(df.index.strftime('%B'), categories=cats, ordered=True)
df1 = df.groupby(idx).mean()
print (df1)
                         a          b         c          d         e
Statement Date                                                      
January         831.666667  78.196667  0.095388  33.000000  6.646667
February        792.000000  75.996667  0.096199   4.333333  4.700000
March           926.333333  88.363333  0.096126   0.000000  4.700000
April           758.000000  72.593333  0.098025   0.666667  4.700000
May             634.000000  61.470000  0.096602   9.000000  4.700000
June            469.000000  41.850000  0.090064   0.000000  4.700000
July            405.000000  36.245000  0.089387   0.000000  4.700000
August          596.500000  56.865000  0.092401   0.000000  4.700000
September       485.000000  47.215000  0.096271   0.000000  4.700000
October         473.500000  48.770000  0.102962   0.000000  4.700000
November        835.000000  81.625000  0.099413   0.000000  4.700000
December        862.666667  82.116667  0.096263   0.000000  4.700000

And DatetimeIndex.year for aggregate sum:

df2 = df.groupby(df.index.year).sum()
print (df2)
                     a       b         c      d      e
Statement Date                                        
2003             655.0   54.51  0.083221    0.0   4.70
2004            8987.0  783.77  1.047944    0.0  56.40
2005            7654.0  775.40  1.214048    0.0  56.40
2006            3646.0  387.67  0.531590  141.0  29.34

Upvotes: 2

Related Questions