PrimuS
PrimuS

Reputation: 2683

Make prediction from Pandas DataFrame

I am very new to DataScience/Pandas in general. I mainly followed this and could get it to work using different classifiers.

import pandas as pd
import src.helper as helper
import time
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import GradientBoostingClassifier

# Headings
headings = ['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor', 'gill-attachment', 'gill-spacing',
            'gill-size', 'gill-color', 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
            'stalk-surface-below-ring', 'stalk-color-above-ring', 'stalk-color-below-ring', 'veil-type',
            'veil-color', 'ring-number', 'ring-type', 'spore-print-color', 'population', 'habitat']

# Load the data
shrooms = pd.read_csv('data/shrooms_no_header.csv', names=headings, converters={"header": float})

# Replace the ? in 'stalk-root' with 0
shrooms.loc[shrooms['stalk-root'] == '?', 'stalk-root'] = np.nan
shrooms.fillna(0, inplace=True)

# Remove columns with only one unique value
for col in shrooms.columns.values:
    if len(shrooms[col].unique()) <= 1:
        print("Removing column {}, which only contains the value: {}".format(col, shrooms[col].unique()[0]))
        shrooms.drop(col, axis=1, inplace=True)

# Col to predict later
col_predict = 'class'

# Binary Encoding
all_cols = list(shrooms.columns.values)
all_cols.remove(col_predict)
helper.encode(shrooms, [col_predict])

# Expand Shrooms DataFrame to Binary Values
helper.expand(shrooms, all_cols)

# Remove the class we want to predict
x_all = list(shrooms.columns.values)
x_all.remove(col_predict)

# Set Train/Test ratio
ratio = 0.7

# Split the DF
df_train, df_test, X_train, Y_train, X_test, Y_test = helper.split_df(shrooms, col_predict, x_all, ratio)

# Try different classifier
# TODO: Batch Use to compare
classifier = GradientBoostingClassifier(n_estimators=1000)

# TODO: Optimize Hyperparamter (where applicable)

# Time the training
timer_start = time.process_time()
classifier.fit(X_train, Y_train)
timer_stop = time.process_time()
time_diff = timer_stop - timer_start

# Get the score
score_train = classifier.score(X_train, Y_train)
score_test = classifier.score(X_test, Y_test)

print('Train Score {}, Test Score {}, Time {}'.format(score_train, score_test, time_diff))

# TODO: Test a manual DataFrame

The "helpers" are functions I don't quite understand fully, but they work:

import numpy as np
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt


def split_df(df, y_col, x_cols, ratio):
    """
    This method transforms a dataframe into a train and test set, for this you need to specify:
    1. the ratio train : test (usually 0.7)
    2. the column with the Y_values
    """
    mask = np.random.rand(len(df)) < ratio
    train = df[mask]
    test = df[~mask]

    y_train = train[y_col].values
    y_test = test[y_col].values
    x_train = train[x_cols].values
    x_test = test[x_cols].values

    return train, test, x_train, y_train, x_test, y_test


def encode(df, columns):
    for col in columns:
        le = LabelEncoder()
        col_values_unique = list(df[col].unique())
        le_fitted = le.fit(col_values_unique)

        col_values = list(df[col].values)
        le.classes_
        col_values_transformed = le.transform(col_values)
        df[col] = col_values_transformed


def expand(df, list_columns):
    for col in list_columns:
        colvalues = df[col].unique()
        for colvalue in colvalues:
            newcol_name = "{}_is_{}".format(col, colvalue)
            df.loc[df[col] == colvalue, newcol_name] = 1
            df.loc[df[col] != colvalue, newcol_name] = 0
    df.drop(list_columns, inplace=True, axis=1)


def correlation_to(df, col):
    correlation_matrix = df.corr()
    correlation_type = correlation_matrix[col].copy()
    abs_correlation_type = correlation_type.apply(lambda x: abs(x))
    desc_corr_values = abs_correlation_type.sort_values(ascending=False)
    y_values = list(desc_corr_values.values)[1:]
    x_values = range(0, len(y_values))
    xlabels = list(desc_corr_values.keys())[1:]
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.bar(x_values, y_values)
    ax.set_title('The correlation of all features with {}'.format(col), fontsize=20)
    ax.set_ylabel('Pearson correlatie coefficient [abs waarde]', fontsize=16)
    plt.xticks(x_values, xlabels, rotation='vertical')
    plt.show()

I would like to have a "manual" test, such as entering x attributes and getting a prediction based on that.

So for example, I hardcode a DataFrame like the following:

manual = pd.DataFrame({
    "cap-shape": ["x"],
    "cap-surface": ["s"],
    "cap-color": ["n"],
    "bruises": ["f"],
    "odor": ["n"],
    "gill-attachment": ["a"],
    "gill-spacing": ["c"],
    "gill-size": ["b"],
    "gill-color": ["y"],
    "stalk-shape": ["e"],
    "stalk-root": ["?"],
    "stalk-surface-above-ring": ["s"],
    "stalk-surface-below-ring": ["s"],
    "stalk-color-above-ring": ["o"],
    "stalk-color-below-ring": ["o"],
    "veil-type": ["p"],
    "veil-color": ["o"],
    "ring-number": ["o"],
    "ring-type": ["p"],
    "spore-print-color": ["o"],
    "population": ["c"],
    "habitat": ["l"]
})

How would I apply the same encoding? My code says helper.encode(manual, [col_predict]) but the manual ofc does not have a col_predict?

Please bear in mind I am a complete beginner, I searched the web a l ot, but I cannot come up with a proper source/tutorial that lets me test a single set.

The full code can be found here.

Upvotes: 1

Views: 12821

Answers (1)

Try this:

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score

data = pd.read_csv('agaricus-lepiota.data.txt', header=None) #read data
data.rename(columns={0: 'y'}, inplace = True) #rename predict column (edible or not)

le = LabelEncoder() # encoder to do label encoder

data = data.apply(lambda x: le.fit_transform(x)) #apply LE to all columns

X = data.drop('y', 1) # X without predict column
y = data['y'] #predict column

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

clf = GradientBoostingClassifier()#you can pass arguments

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test) #it is predict for objects in test

print(accuracy_score(y_test, y_pred)) #check accuracy

I think you can read more about this in sklearn site. Is this example what you want?

To check your manual data:

manual = manual.apply(lambda x: le.fit_transform(x))
clf.predict(manual)

Upvotes: 2

Related Questions