Grint
Grint

Reputation: 101

Same seed, PL/R vs. R, different results (Random Forest)

I have an R function that takes some input data that contains missing values, uses Random Forest imputation to impute those values (through the rfImpute function from RandomForest package) and then goes through a RF importance calculation to identify the relative importance of variables (through ranger from the ranger package). The function has the seed 2018.

When I run the function using R with set.seed(2018), I get a set of results. When running the exact same function, the exact same input data and using the exact same seed in PL/R (using Navicat) the results are different.

I am having a really hard time understanding what could be causing this issue as everything is the exact same between the two (except one is R and the other is PL/R). For some input datasets, the results are equivalent but for others they are not. What could the problem be?

Note: I am not able to provide a simple example since my data is confidential.

Upvotes: 0

Views: 241

Answers (0)

Related Questions