Reputation: 3
I'm trying to draw parallel equidistant lines inside a circle. I've got to the stage that if i connect points from their opposite angles on the circumference I get parallel lines... but they're not equidistant...
Here's some code:
var num_lines = 8;
var num_points = num_lines * 2;
var start_angle = 100;
var points = [];
var radius = 200;
ctx.strokeCircle(w/2, h/2, radius, radius); // shorthand for ctx.arc( x, y, 5, 0, Math.PI * 2, true );
for (var i = 0; i < num_points; i++) {
var angle = 360/num_points * i;
ctx.fillStyle = "red";
if (i %2 == 0 ) ctx.fillStyle = "blue";
var x = w/2 + Math.cos(angle) * radius/2;
var y = h/2 + Math.sin(angle) * radius/2;
ctx.circle(x, y, 10, 10); // shorthand for ctx.arc( x, y, 5, 0, Math.PI * 2, true );
points.push({x: x, y: y});
}
for (var i = 0; i < num_lines; i++) {
ctx.line(points[i].x, points[i].y, points[points.length-i-1].x, points[points.length-i-1].y)
}
Upvotes: 0
Views: 707
Reputation: 15035
Use Pythagoras' theorem.
The ...
y
: vertical position of the line relative to the centerx
: horizontal distance of its endpoints from the centerr
: radius of the circle... must satisfy y^2 + x^2 = r^2
.
Code:
var radius = 200;
var num_lines = 8;
// vertical spacing
var delta_y = (2.0 * radius) / (num_lines + 1);
ctx.strokeCircle(w/2, h/2, radius, radius);
for (var i = 0; i < num_lines; i++)
{
// applying pythagoras
var y = delta_y * (i + 1) - radius / 2;
var x = Math.sqrt(radius * radius - y * y);
// calculating endpoints
var left_x = w / 2 - x;
var right_x = w / 2 + x;
var end_y = h / 2 + y;
ctx.fillStyle = (i % 2 == 0) ? "blue" : "red";
ctx.circle(left_x, end_y, 10, 10);
ctx.circle(right_x, end_y, 10, 10);
ctx.line(left_x, end_y, right_x, end_y);
}
EDIT: rotation
To rotate a vector by angle a
clockwise:
x' = x * cos(a) + y * sin(a)
y' = y * cos(a) - x * sin(a)
Code:
var radius = 200;
var num_lines = 50;
var angle = 60;
// temporary variables
var delta_y = (2.0 * radius) / (num_lines);
var cos_a = Math.cos(angle * Math.PI / 180.0);
var sin_a = Math.sin(angle * Math.PI / 180.0);
ctx.strokeCircle(w / 2, h / 2, radius * 2, radius * 2);
for (var i = 0; i < num_lines; i++)
{
// applying pythagoras
var y = delta_y * i - radius;
var x = Math.sqrt(radius * radius - y * y);
// rotating the displacement vector
var left_x = y * sin_a + x * cos_a;
var right_x = y * sin_a - x * cos_a;
var left_y = y * cos_a - x * sin_a;
var right_y = y * cos_a + x * sin_a;
ctx.fillStyle = (i % 2 == 0) ? "blue" : "red";
ctx.line(w / 2 + left_x , h / 2 + left_y ,
w / 2 + right_x, h / 2 + right_y);
}
Upvotes: 1
Reputation: 3
got it to work like so... wondering how I can rotate the lines at an angle (mathematically, not using ctx.translate and ctx.rotate ):
var radius = 200;
var num_lines = 50;
// vertical spacing
var delta_y = (2.0 * radius) / (num_lines);
ctx.strokeCircle(w/2, h/2, radius * 2, radius * 2);
for (var i = 0; i < num_lines; i++)
{
// applying pythagoras
var y = delta_y * (i) - radius;
var x = Math.sqrt(radius * radius - y * y);
// calculating endpoints
var left_x = w / 2 - x;
var right_x = w / 2 + x;
var end_y = h / 2 + y;
ctx.fillStyle = (i % 2 == 0) ? "blue" : "red";
ctx.line(left_x, end_y, right_x, end_y);
}
Upvotes: 0