Reputation: 1
I have a data frame such as below:
Two categorical variables are impulsivity and treatment and multiple dependent variables (prot_width etc..).
I have managed to produce a boxplot that models the dependent variable by impulsivity and treatment;
sns.boxplot(x='treatment', y='prot_width', hue='impulsivity',
palette=['b','r'], data=data)
sns.despine(offset=10, trim=True)
which produces the graph below;
Now what I want to do is produce the exact same graph but for each dependent variable. I want to loop through each dependent variable column renaming the y-axis.
I have searched for for loops etc. but can't work out how to call the columns and more importantly how to change the y-axis during the loop.
Upvotes: 0
Views: 1653
Reputation: 107567
Simply loop through the numeric data columns using DataFrame.columns
which is an iterable object and then pass iterator variable (here being col) into y argument of boxplot.
for col in data.columns[4:len(data.columns)]:
sns.boxplot(x='treatment', y=col, hue='impulsivity',
palette=['b','r'], data=data)
sns.despine(offset=10, trim=True)
plt.show()
Alternatively use select_dtypes
for all numeric columns:
for col in data.select_dtypes(['float', 'int']).columns:
...
Or even filter
to leave out non-numeric columns:
for col in data.filter(regex="[^(subject|protrusion|impulsivity|treatment)]").columns:
...
To demonstrate with random data:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(9192018)
demo_df = pd.DataFrame({'tool': np.random.choice(['pandas', 'r', 'julia', 'sas', 'stata', 'spss'],500),
'os': np.random.choice(['windows', 'mac', 'linux'],500),
'prot_width': np.random.randn(500)*100,
'prot_length': np.random.uniform(0,1,500),
'prot_lwr': np.random.randint(100, size=500)
}, columns=['tool', 'os', 'prot_width', 'prot_length', 'prot_lwr'])
for col in demo_df.columns[2:len(demo_df.columns)]:
sns.boxplot(x='tool', y=col, hue='os', palette=['b','r'], data=demo_df)
sns.despine(offset=10, trim=True)
plt.legend(loc='center', ncol = 3, bbox_to_anchor=(0.5, 1.10))
plt.show()
plt.clf()
plt.close()
Upvotes: 1