Reputation: 177
This post follows from this topic classifying identically pattern in words using R The solution is good, but i need it in data frame format. The data is same
text<-structure(list(ID_C_REGCODES_CASH_VOUCHER = c(3941L, 3941L, 3941L,
3945L, 3945L, 3945L, 3945L, 3945L, 3945L, 3945L, 3953L, 3953L,
3953L, 3953L, 3953L, 3953L, 3960L, 3960L, 3960L, 3960L, 3960L,
3960L, 3967L, 3967L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), GOODS_NAME = structure(c(19L,
17L, 15L, 18L, 16L, 23L, 21L, 14L, 22L, 20L, 6L, 2L, 10L, 8L,
7L, 13L, 5L, 11L, 7L, 12L, 4L, 3L, 9L, 9L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("", "* 2108609 SLOB.Mayon.OLIVK.67% 400ml", "* 3014084 D.Dym.Spikachki DEREVEN.MINI 1kg",
"* 3398012 DD Kolb.SERV.OKHOTN in / to v / y0.35", "* 3426789 WH.The corn rav guava / yagn.d / CAT seed 85g",
"197 Onion 1 kg", "2013077 MAKFA Makar.RAKERS 450g", "2030918 MARIA TRADITIONAL Biscuit 180g",
"2049750 MAKFA Makar.SHIGHTS 450g", "3420159 LEBED.Mol.past.3,4-4,5% 900g",
"3491144 LIP.NAP.ICE TEA green yellow 0.5 liter", "6788 MAKFA Makar.perya 450g",
"809 Bananas 1kg", "FetaXa Cheese product 60% 400g (", "Lemons 55+",
"MAKFA Macaroni feathers like. in / with", "Napkins paper color 100pcs PL",
"Package \"Magnet\" white (Plastiktre)", "Pasta Makfa snail flow-pack 450 g.",
"SHEBEKINSKIE Macaroni Butterfly №40", "SOFT Cotton sticks 100 PE (BELL",
"TENDER AGE Cottage cheese 10", "TOBUS steering-wheel 0.5kg flow"
), class = "factor")), .Names = c("ID_C_REGCODES_CASH_VOUCHER",
"GOODS_NAME"), class = "data.frame", row.names = c(NA, -61L))
let's perform cluster analysis
text <- text[1:24,]
library(quanteda)
library(tidyverse)
hc <- text %>%
pull(GOODS_NAME) %>%
as.character %>%
quanteda::tokens(
remove_numbers = T,
remove_punct = T,
remove_symbols = T,
remove_separators = T
) %>%
quanteda::tokens_tolower() %>%
quanteda::tokens_remove(valuetype="regex", pattern = c("^\\d.*")) %>%
quanteda::dfm() %>%
textstat_simil(method = "jaccard") %>%
magrittr::multiply_by(-1) %>%
`attr<-`("Labels", text$GOODS_NAME) %>%
hclust(method = "average")
clusters <- cutree(hc, h = -0.1)
split(text, clusters)
After code finished, how can i the result convert to data.frame?
Expected output
s=as.data.frame(split(text, clusters)) Error in (function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE, : arguments imply differing number of rows: 7, 1, 2
So ideal output
clust ID_C_REGCODES_CASH_VOUCHER GOODS_NAME
1 3941 Pasta Makfa snail flow-pack 450 g.
1 3945 MAKFA Macaroni feathers like. in / with
1 3953 2013077 MAKFA Makar.RAKERS 450g
1 3960 2013077 MAKFA Makar.RAKERS 450g
1 3960 6788 MAKFA Makar.perya 450g
1 3967 2049750 MAKFA Makar.SHIGHTS 450g
1 3967 2049750 MAKFA Makar.SHIGHTS 450g
2 3941 Napkins paper color 100pcs PL
Upvotes: 0
Views: 939
Reputation: 27732
library( data.table )
dt <- data.table::rbindlist( split(text, clusters) )[, clust := clusters]
Upvotes: 1