Reputation: 10675
I have a struct which owns a boxed value of some trait type. The struct itself also implements the same trait. I would like to replace the value with a new instance of the same struct, which wraps it.
The following code, which does not compile, should make it more clear what I am trying to do:
trait T {}
struct S {
t: Box<dyn T>,
}
impl T for S {}
impl S {
fn new(t: Box<dyn T>) -> Self {
Self { t }
}
fn wrap_t(&mut self) {
self.t = Box::new(Self::new(self.t))
}
}
This fails:
error[E0507]: cannot move out of borrowed content
--> src/lib.rs:14:37
|
14 | self.t = Box::new(Self::new(self.t))
| ^^^^ cannot move out of borrowed content
Implementing wrap_t
like this does compile:
use std::mem;
fn wrap_t(&mut self) {
unsafe {
let old_t = mem::replace(&mut self.t, mem::uninitialized());
let new_t = Box::new(Self::new(old_t));
let uninit = mem::replace(&mut self.t, new_t);
mem::forget(uninit);
}
}
I wonder if there is a safe way to do this.
Upvotes: 4
Views: 1140
Reputation: 58875
The only unsafe
function you are using is mem::uninitialized
. You need something to pass to mem::replace
, but implementing Default
won't work because default()
returns Self
, which prevents it from being object-safe. Similarly, you can't implement Clone
to duplicate the old value, since clone()
also returns Self
.
You can just implement a dummy type for the purpose though:
struct Dummy;
impl T for Dummy {}
fn wrap_t(&mut self) {
let old_t = mem::replace(&mut self.t, Box::new(Dummy));
let new_t = Box::new(Self::new(old_t));
mem::replace(&mut self.t, new_t);
}
You also won't need the mem::forget
here now either (I'm assuming that was there to prevent undefined behaviour when the uninitialised memory was dropped).
As an alternative to Clone
, you can roll your own own, which clones to a Box<dyn T>
, avoiding having a Self
in the method signature, so the trait stays object safe:
trait T: Debug {
fn clone_in_box(&self) -> Box<dyn T>;
}
impl T for S {
fn clone_in_box(&self) -> Box<dyn T> {
Box::new(S {
t: self.t.clone_in_box(),
})
}
}
fn wrap_t(&mut self) {
let cloned = self.clone_in_box();
let old_t = mem::replace(&mut self.t, cloned);
let new_t = Box::new(Self::new(old_t));
mem::replace(&mut self.t, new_t);
}
There is also an alternative design, which is much simpler to understand when reading the code. That is just to consume self
and return a new object:
fn wrap_t(self) -> Self {
Self::new(Box::new(Self::new(self.t)))
}
And instead of this:
s.wrap_t();
You would do:
s = s.wrap_t();
Upvotes: 1