Reputation:
I would like to set a value to a panda dataframe based on the values of another column. In a nutshell, for example, if I wanted to set indices of a column my_column
of a pandas dataframe pd
where another column, my_interesting_column
is between 10 and 30, I would like to do something like:
start_index=pd.find_closest_index_where_pd["my_interesting_column"].is_closest_to(10)
end_index=pd.find_closest_index_where_pd["my_interesting_column"].is_closest_to(30)
pd["my_column"].between(star_index, end_index)= some_value
As a simple illustration, suppose I have the following dataframe
df = pd.DataFrame(np.arange(10, 20), columns=list('A'))
df["B"]=np.nan
>>> df
A B
0 10 NaN
1 11 NaN
2 12 NaN
3 13 NaN
4 14 NaN
5 15 NaN
6 16 NaN
7 17 NaN
8 18 NaN
9 19 NaN
How can I do something like
df.where(df["A"].is_between(13,16))= 5
So that the end results looks like
>>> df
A B
0 10 NaN
1 11 NaN
2 12 NaN
3 13 5
4 14 5
5 15 5
6 16 5
7 17 NaN
8 18 NaN
9 19 NaN
Upvotes: 0
Views: 2072
Reputation: 636
pd.loc[start_idx:end_idx, 'my_column'] = some_value
I think this is what you are looking for
df.loc[(df['A'] >= 13) & (df['A'] <= 16), 'B'] = 5
Upvotes: 2