Reputation: 73
I'm trying to create a 4x4 FacetGrid in seaborn for 4 boxplots, each of which is split into 3 boxplots based on the iris species in the iris dataset. Currently, my code looks like this:
sns.set(style="whitegrid")
iris_vis = sns.load_dataset("iris")
fig, axes = plt.subplots(2, 2)
ax = sns.boxplot(x="Species", y="SepalLengthCm", data=iris, orient='v',
ax=axes[0])
ax = sns.boxplot(x="Species", y="SepalWidthCm", data=iris, orient='v',
ax=axes[1])
ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris, orient='v',
ax=axes[2])
ax = sns.boxplot(x="Species", y="PetalWidthCm", data=iris, orient='v',
ax=axes[3])
However, I'm getting this error from my interpreter:
AttributeError: 'numpy.ndarray' object has no attribute 'boxplot'
I'm confused on where the attribute error is exactly in here. What do I need to change?
Upvotes: 7
Views: 19661
Reputation: 3285
Not a direct answer to your error, but if you are going to use seaborn, you should try to stick with "long" or "tidy" data (https://seaborn.pydata.org/tutorial/data_structure.html#long-form-data).
I'm assuming your original data set is wide (column for each feature of the observation). If you melt the data set like so:
iris = iris.melt(id_vars='target')
print(iris.head())
target variable value
0 setosa sepal length (cm) 5.1
1 setosa sepal length (cm) 4.9
2 setosa sepal length (cm) 4.7
3 setosa sepal length (cm) 4.6
4 setosa sepal length (cm) 5.0
You'll be able to use seaborn's catplot
with kind='box'
sns.catplot(
data=iris, x='target', y='value',
col='variable', kind='box', col_wrap=2
)
Upvotes: 11
Reputation: 2451
Or just making the above more concise:
cat_variables = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']
x_var = "Species"
fig, axes = plt.subplots(len(cat_variables)/2, len(cat_variables)/2, figsize=(15,15))
axes = axes.flatten()
i = 0
for t in cat_variables:
ax = sns.boxplot(x=x_var, y=TARGET, data=iris, orient='v',
ax=axes[i])
i +=1
Upvotes: 0
Reputation: 153460
Because as @Lucas points out that axes returns a numpy array of 2D(nrows, ncols), you can flatten this array 1D using:
axes=axes.flatten()
And, you can keep your same code like this:
fig, axes = plt.subplots(2, 2)
axes = axes.flatten()
ax = sns.boxplot(x="Species", y="SepalLengthCm", data=iris, orient='v',
ax=axes[0])
ax = sns.boxplot(x="Species", y="SepalWidthCm", data=iris, orient='v',
ax=axes[1])
ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris, orient='v',
ax=axes[2])
ax = sns.boxplot(x="Species", y="PetalWidthCm", data=iris, orient='v',
ax=axes[3])
Output:
Upvotes: 3
Reputation: 7331
axes
shape is (nrows, ncols)
. In this case is:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f4267f425f8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f4267f1bb38>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x7f4267ec95c0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f4267ef9080>]],
dtype=object)
So, when you do ax=axes[0]
you get a array and not the axes. Try:
fig, axes = plt.subplots(2, 2)
ax = sns.boxplot(x="Species", y="SepalLengthCm", data=iris, orient='v',
ax=axes[0, 0])
ax = sns.boxplot(x="Species", y="SepalWidthCm", data=iris, orient='v',
ax=axes[0, 1])
ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris, orient='v',
ax=axes[1, 0])
ax = sns.boxplot(x="Species", y="PetalWidthCm", data=iris, orient='v',
ax=axes[1, 1])
Upvotes: 3