Reputation: 1297
OpenCV has a limited amount of color maps. MatplotLib has many more color maps, but it is not straightforward to apply these colormaps to given OpenCV images. How to apply MatplotLib color maps from the page below to OpenCV images when using the Python API? This is similar to applying a custom colormap to a given image.
https://matplotlib.org/examples/color/colormaps_reference.html
Upvotes: 12
Views: 14935
Reputation: 2171
For Python >= 2.7, cmapy packages this functionality in a convenient way. Install it with:
Python 2.7:
pip install cmapy
Python 3.x:
pip3 install cmapy
Or, for Anaconda (from conda-forge):
conda install -c conda-forge cmapy
And use it like this:
import cv2
import matplotlib.pyplot as plt
import cmapy
# Read image.
img = cv2.imread('imgs/woman.png')
# Colorize.
img_colorized = cv2.applyColorMap(img, cmapy.cmap('viridis'))
# Display
plt.imshow(img_colorized)
plt.show()
Different colormaps give something like this:
See all the available colormaps in action here.
Disclaimer: I wrote cmapy (because I needed this functionality for another project), and internally, it does pretty much the same as the other answers.
Upvotes: 11
Reputation: 19041
In recent versions of OpenCV (starting with 3.3), there's an overload of applyColorMap
, which allows you to provide a custom colormap (either 1 or 3 channel). I've modified verified.human's code to simply generate a colormap suitable to use with this function.
I've taken few more opportunities to simplify the code:
ScalarMappable.to_rgba
can return bytes (in range 0-255) directly when you set bytes
argument to True
.Code:
import cv2
import numpy as np
from matplotlib import pyplot as plt
def get_mpl_colormap(cmap_name):
cmap = plt.get_cmap(cmap_name)
# Initialize the matplotlib color map
sm = plt.cm.ScalarMappable(cmap=cmap)
# Obtain linear color range
color_range = sm.to_rgba(np.linspace(0, 1, 256), bytes=True)[:,2::-1]
return color_range.reshape(256, 1, 3)
image_gray = cv2.imread('cage.png', cv2.IMREAD_GRAYSCALE)
image_bgr = cv2.applyColorMap(image_gray, get_mpl_colormap('bwr'))
cv2.imshow('image with colormap', image_bgr)
cv2.waitKey()
Upvotes: 8
Reputation: 1297
Answering my own question because I did not find an easy solution on StackOverflow:
def apply_custom_colormap(image_gray, cmap=plt.get_cmap('seismic')):
assert image_gray.dtype == np.uint8, 'must be np.uint8 image'
if image_gray.ndim == 3: image_gray = image_gray.squeeze(-1)
# Initialize the matplotlib color map
sm = plt.cm.ScalarMappable(cmap=cmap)
# Obtain linear color range
color_range = sm.to_rgba(np.linspace(0, 1, 256))[:,0:3] # color range RGBA => RGB
color_range = (color_range*255.0).astype(np.uint8) # [0,1] => [0,255]
color_range = np.squeeze(np.dstack([color_range[:,2], color_range[:,1], color_range[:,0]]), 0) # RGB => BGR
# Apply colormap for each channel individually
channels = [cv2.LUT(image_gray, color_range[:,i]) for i in range(3)]
return np.dstack(channels)
image_gray = cv2.imread('./lena.jpg', cv2.IMREAD_GRAYSCALE)
image_bgr = apply_custom_colormap(image_gray, cmap=plt.get_cmap('bwr'))
cv2.imshow('image with colormap', image_bgr)
cv2.waitKey(0)
Produces the image:
Upvotes: 6