Reputation: 111
Can I synchronize method by parameter?
For example - I get person to some method and I want to do some operation for person, but if few thread call this method for the same person I want to do it one by one.
private void dosomething(Long id, Person person) {
dosomethingelse(id, person);
}
How to call dosomethingelse (id, person) only for the same id one by one? but I want that this code for different id-s can be called multithreadly
I wrote this code, but maybe something wrong here or something can be better.
public static class LatchByValue <T> {
public void latch(T value, ConsumerWithException<T> consummer) throws Exception {
CountDownLatch latch = new CountDownLatch(1);
try {
CountDownLatch previousLatch = null;
// we are checking if another thread is already calling this method with the same id
// if sync has CountDownLatch so another thread is already calling this method
// or we put our latch and go on
while ((previousLatch = sync.putIfAbsent(value, latch)) != null) {
try {
// we are waiting for another thread, we are waiting for all threads that put their latch before our thread
previousLatch.await();
} catch (InterruptedException e) {
return;
}
}
consummer.accept(value);
} finally {
latch.countDown();
sync.remove(value, latch);
}
}
private ConcurrentHashMap<T, CountDownLatch> sync = new ConcurrentHashMap<>();
}
Example:
LatchByValue<Long> latch = new LatchByValue<>();
private void dosomething(Long id, Person person) {
latch.latch(
id,
currentId -> { dosomethingelse(currentId, person); }
);
}
Upvotes: 3
Views: 2098
Reputation: 305
private static final Set<Long> lockedIds = new HashSet<>();
private void lock(Long id) throws InterruptedException {
synchronized (lockedIds) {
while (!lockedIds.add(id)) {
lockedIds.wait();
}
}
}
private void unlock(Long id) {
synchronized (lockedIds) {
lockedIds.remove(id);
lockedIds.notifyAll();
}
}
public void doSomething(Long id) throws InterruptedException {
try {
lock(id);
//Put your code here.
//For different ids it is executed in parallel.
//For equal ids it is executed synchronously.
} finally {
unlock(id);
}
}
Upvotes: 0
Reputation: 4574
You can use synchronized
keyword on the parameter passed (culprit: it cannot be null!). And that also allows you to stop worrying about re-acquiring the lock (it's reentrant).
So the implementation would look like:
private void doSomething(Long id, Person person) {
synchronized (person) {
// do something
}
}
Remember that any other accesses (not in doSomething
call) also would need to have the synchronization block, e.g.:
// another method, unrelated, but does something with 'person'
private void doSomethingElse(Person person, ... /* other arguments */) {
synchronized (person) {
// do something
}
}
It would be good document (in Person
's javadoc) that the user needs to acquire the lock for that object.
If you want to provide a critical section for <id, person>
tuple, you'd need to change your API a bit - and then pass that object around in your application.
private void doSomething(IdAndPerson idAndPerson) {
synchronized (idAndPerson) {
// do something
}
}
class IdAndPerson {
private final Long id;
private final Person person;
// constructor etc.
}
Upvotes: 0
Reputation: 328775
Problem with using a CountdownLatch
is that you can't "increment" the count so you need to replace the existing latch when it's been used, which complicates the code.
You could instead use a Semaphore
with one permit which would allow you to do the same thing but in a simpler way.
Semaphore s = sync.computeIfAbsent(value, x -> new Semaphore(1, true));
s.acquire(); //this blocks and throws InterruptedException, which you need to handle
try {
consummer.accept(value);
} finally {
s.release();
}
Upvotes: 2