Reputation: 73
I'm very new to pandas sorry for not making much sense. I have a sense that groupby by the category but, I am not sure how to run functions within groupby.
I want to find the dates from a given row in Date1 and see if any dates(in date2) of the same id is within 7 days.
I thought about splitting date1 and date2 by doing but i'm not sure where to go from there.
g1 = df[['Category', 'Date1']]
g2 = df[['Category', 'Date2']]
dif = pd.Timedelta(7, unit='D')
df['isDateWithin7Days'] = np.where((g1['Category'] == g2['Category'])(df['Date1'] > g2['Date2']-dif, True, False))
I get this error
ValueError: operands could not be broadcast together with shapes (50537,) (3,)
df1:
category date1 date2
blue 1/1/2018
blue 1/2/2018
blue 1/5/2018
blue 2/1/2018
green 1/3/2018
green 1/1/2018
red 12/1/2018
red 11/1/2018
Expected results:
category date1 date2 isDateWithin7Days? EarliestDate?
blue 1/1/2018 True 1/2/2018
blue 2/1/2018 False 0
green 1/3/2018 False 0
red 12/1/2018 False 0
Upvotes: 1
Views: 1688
Reputation: 1726
IIUC, you are trying to look for dates in the date2
column that are within 7 days of a unique combination of category
and date1
- this code returns True
if any such dates are found, else returns False
:
df['date1'] = pd.to_datetime(df['date1'], format = '%m-%d-%y')
df['date2'] = pd.to_datetime(df['date2'], format = '%m-%d-%y')
df1 = df.dropna(subset = ['date1']).drop(columns = ['date2'])
df2 = df.dropna(subset = ['date2']).drop(columns = ['date1'])
df3 = df1.merge(df2, on = 'category')
df3['date2'].between(df3['date1'] - pd.Timedelta(days=7), df3['date1'] + pd.Timedelta(days=7))
df3['isDateWithin7Days?'] = df3['date2'].between(df3['date1'] - pd.Timedelta(days=7), df3['date1'] + pd.Timedelta(days=7))
df3 = df3.groupby(['category', 'date1'])['isDateWithin7Days?'].sum().reset_index()
df3['isDateWithin7Days?'] = np.where(df3['isDateWithin7Days?'] > 0, True, False)
Output:
category date1 isDateWithin7Days?
0 blue 2018-01-01 True
1 blue 2018-02-01 False
2 green 2018-01-03 False
3 red 2018-12-01 False
Upvotes: 2