Reputation: 191
So, I have this data
test_data <- structure(list(
time = c(29510, 29528.023023023, 29546.046046046,
29564.0690690691, 29582.0920920921, 29600.1151151151,
29618.1381381381, 29636.1611611612, 29654.1841841842,
29672.2072072072, 29690.2302302302, 29708.2532532533,
29726.2762762763, 29744.2992992993, 29762.3223223223,
29780.3453453453, 29798.3683683684, 29816.3913913914,
29834.4144144144, 29852.4374374374),
sum = c(0L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 5L, 7L, 9L, 9L, 15L,
17L, 18L, 18L, 18L, 18L, 21L)),
.Names = c("time", "sum"),
row.names = c(NA, 20L),
class = "data.frame")
Where the time is numeric.
I can plot it perfectly with ggplot2 using this:
ggplot(test_data) +
geom_line(aes(x=time, y=sum)) +
scale_x_time()
But when I try to use plot_ly
the time comes out incorrectly as numbers instead of time. Is there something in plotly similar to ggplot2's scale_x_time
function?
plot_ly(test_data, x = ~time, y = ~sum, type = 'scatter', mode = 'lines')
Upvotes: 0
Views: 97
Reputation: 9525
What about this, integrating the @Z.Lin's advice, and removing the necessity of the day:
test_data$time <- as.POSIXct(test_data$time, origin = "1970-01-01") # as date
test_data$time <- strftime(test_data$time,format="%H:%M:%S") # remove the day
plot_ly(test_data, x = ~time, y = ~sum, type = 'scatter', mode = 'lines')
Upvotes: 1