Reputation: 69
I want to visualize and save the predictions of the the validation data after each training epoch. In a way that I can further use the predictions to analyse them offline.
I know the callback functionality of keras
might work, but I would like to understand how to use it in model.fit()
.
Upvotes: 3
Views: 963
Reputation: 10396
You can write your own
callback
function and then call it within yourmodel_fit()
method
See official Keras documentation here:
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
model = Sequential()
model.add(Dense(10, input_dim=784, kernel_initializer='uniform'))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
history = LossHistory()
model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=0, callbacks=[history])
print(history.losses)
# outputs
'''
[0.66047596406559383, 0.3547245744908703, ..., 0.25953155204159617, 0.25901699725311789]
'''
Obviously instead of saving losses, and appending them. You can also call model.predict()
and save the results within your own callback
.
Upvotes: 3