Reputation: 1193
This question is about efficiently applying a custom function on logical groups of rows in a Pandas dataframe, which share a value in some column.
Consider the following example of a dataframe:
sID = [1,1,1,2,4,4,5,5,5]
data = np.random.randn(len(sID))
dates = pd.date_range(start='1/1/2018', periods=len(sID))
mydf = pd.DataFrame({"subject_id":sID, "data":data, "date":dates})
mydf['date'][5] += pd.Timedelta('2 days')
which looks like:
data date subject_id
0 0.168150 2018-01-01 1
1 -0.484301 2018-01-02 1
2 -0.522980 2018-01-03 1
3 -0.724524 2018-01-04 2
4 0.563453 2018-01-05 4
5 0.439059 2018-01-08 4
6 -1.902182 2018-01-07 5
7 -1.433561 2018-01-08 5
8 0.586191 2018-01-09 5
Imagine that for each subject_id
, we want to subtract from each date the first date encountered for this subject_id. Storing the result in a new column "days_elapsed", the result will look like this:
data date subject_id days_elapsed
0 0.168150 2018-01-01 1 0
1 -0.484301 2018-01-02 1 1
2 -0.522980 2018-01-03 1 2
3 -0.724524 2018-01-04 2 0
4 0.563453 2018-01-05 4 0
5 0.439059 2018-01-08 4 3
6 -1.902182 2018-01-07 5 0
7 -1.433561 2018-01-08 5 1
8 0.586191 2018-01-09 5 2
One natural way of doing this is by using groupby
and apply
:
g_df = mydf.groupby('subject_id')
mydf.loc[:, "days_elapsed"] = g_df["date"].apply(lambda x: x - x.iloc[0]).astype('timedelta64[D]').astype(int)
However, if the number of groups (subject IDs) is big (e.g. 10^4), and let's say only 10 times smaller than the length of the dataframe, this very simple operation is really slow.
Is there any faster method?
PS: I have also tried setting the index to subject_id
and then using the following list comprehension:
def get_first(series, ind):
"Return the first row in a group within a series which (group) potentially can span multiple rows and corresponds to a given index"
group = series.loc[ind]
if hasattr(group, 'iloc'):
return group.iloc[0]
else: # this is for indices with a single element
return group
hind_df = mydf.set_index('subject_id')
A = pd.concat([hind_df["date"].loc[ind] - get_first(hind_df["date"], ind) for ind in np.unique(hind_df.index)])
However, it's even slower.
Upvotes: 1
Views: 107
Reputation: 5460
mydf['days_elapsed'] = (mydf['date'] - mydf.groupby(['subject_id'])['date'].transform('min')).dt.days
Upvotes: 1
Reputation: 164663
You can use GroupBy
+ transform
with first
. This should be more efficient as it avoids expensive lambda
function calls.
You may also see a performance improvement by working with the NumPy array via pd.Series.values
:
first = df.groupby('subject_id')['date'].transform('first').values
df['days_elapsed'] = (df['date'].values - first).astype('timedelta64[D]').astype(int)
print(df)
subject_id data date days_elapsed
0 1 1.079472 2018-01-01 0
1 1 -0.197255 2018-01-02 1
2 1 -0.687764 2018-01-03 2
3 2 0.023771 2018-01-04 0
4 4 -0.538191 2018-01-05 0
5 4 1.479294 2018-01-08 3
6 5 -1.993196 2018-01-07 0
7 5 -2.111831 2018-01-08 1
8 5 -0.934775 2018-01-09 2
Upvotes: 1