Reputation: 13
I have pandas dataframe with two timestamps columns start and end
start end
2014-08-28 17:00:00 | 2014-08-29 22:00:00
2014-08-29 10:45:00 | 2014-09-01 17:00:00
2014-09-01 15:00:00 | 2014-09-01 19:00:00
The intention is to aggregate the number of hours that were logged on a given date. So in the case of my example.
I would be creating date range and aggreating the hours over multiple entries.
2014-08-28 -> 7 hrs
2014-08-29 -> 10 hrs + 1 hr 15 min => 11 hrs 15 mins
2014-08-30 -> 24 hrs
2014-08-31 -> 24 hrs
2014-09-01 -> 17 hrs + 4 hrs => 21 hrs
I've tried using timedelta but it only splits in absolute hours, not on a per day basis.
I've also tried to explode the rows(i.e split the row on a day basis but I could only get it to works at a date level, not at a time stamp level)
Any suggestion are greatly appreciated.
Upvotes: 1
Views: 671
Reputation: 4607
you can use of pd.date_range
to create a minute to minute interval
of each day that spent, after that you can count the spent minutes and convert it to time delta
start end
0 2014-08-28 17:00:00 2014-08-29 22:00:00
1 2014-08-29 10:45:00 2014-09-01 17:00:00
2 2014-09-01 15:00:00 2014-09-01 19:00:00
#Creating the minute to minute time intervals from start to end date of each line and creating as one series of dates
a = pd.Series(sum(df.apply(lambda x: pd.date_range(x['start'],x['end'],freq='min').tolist(),1).tolist(),[])).dt.date
# Counting the each mintue intervals and converting to time stamps
a.value_counts().apply(lambda x: pd.to_timedelta(x,'m'))
Out:
2014-08-29 1 days 11:16:00
2014-08-30 1 days 00:00:00
2014-08-31 1 days 00:00:00
2014-09-01 0 days 21:02:00
2014-08-28 0 days 07:00:00
dtype: timedelta64[ns]
Upvotes: 1
Reputation: 109
Hope that would be useful. I guess you'll be able to adjust to serve your purpose. Way to thinking is the following - store day and corresponding time in dict. if it's the same day - just write difference. Otherwise write time till first midnight, iterate whenever days needed and write time from last midnight till end. FYI... I guess for 2014-09-01 result might be 21 hrs.
from datetime import datetime, timedelta
from collections import defaultdict
s = [('2014-08-28 17:00:00', '2014-08-29 22:00:00'),
('2014-08-29 10:45:00', '2014-09-01 17:00:00'),
('2014-09-01 15:00:00', '2014-09-01 19:00:00') ]
def aggreate(time):
store = defaultdict(timedelta)
for slice in time:
start = datetime.strptime(slice[0], "%Y-%m-%d %H:%M:%S")
end = datetime.strptime(slice[1], "%Y-%m-%d %H:%M:%S")
start_date = start.date()
end_date = end.date()
if start_date == end_date:
store[start_date] += end - start
else:
midnight = datetime(start.year, start.month, start.day + 1, 0, 0, 0)
part1 = midnight - start
store[start_date] += part1
for i in range(1, (end_date - start_date).days):
next_date = start_date + timedelta(days=i)
store[next_date] += timedelta(hours=24)
last_midnight = datetime(end_date.year, end_date.month, end_date.day, 0, 0, 0)
store[end_date] += end - last_midnight
return store
r = aggreate(s)
for i in r:
print(i, r[i])
2014-08-28 7:00:00
2014-08-29 1 day, 11:15:00
2014-08-30 1 day, 0:00:00
2014-08-31 1 day, 0:00:00
2014-09-01 21:00:00
Upvotes: 0