Reputation: 373
Below is my code:
tuned_parameters = [
{'kernel': ['linear], 'C':[1, 10], 'class_weight': ['auto']}, {'kernel': ['rbf'], 'C':[1,10], 'class_weight':['auto']}]
clf = GridSearchCV(svm.SVC(), tuned_parameters, cv=5, scoring='accuracy')
clf.fit(x_train,y_train)
But I get the following error:
Traceback (most recent call last):
File "/home/arajabi/PycharmProjects/Muffin/classification.py", line 77, in <module>
clf3.fit(x_train, y_train)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/model_selection/_search.py", line 639, in fit
cv.split(X, y, groups)))
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 779, in __call__
while self.dispatch_one_batch(iterator):
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 625, in dispatch_one_batch
self._dispatch(tasks)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 588, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 111, in apply_async
result = ImmediateResult(func)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 332, in __init__
self.results = batch()
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/model_selection/_validation.py", line 458, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/svm/base.py", line 150, in fit
y = self._validate_targets(y)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/svm/base.py", line 502, in _validate_targets
self.class_weight_ = compute_class_weight(self.class_weight, cls, y_)
File "/home/arajabi/anaconda3/lib/python3.5/site-packages/sklearn/utils/class_weight.py", line 62, in compute_class_weight
" got: %r" % class_weight)
ValueError: class_weight must be dict, 'balanced', or None, got: 'auto'
I am relatively new to python. Can someone give me a straightforward solution for this problem?
Upvotes: 2
Views: 3656
Reputation: 120
The documentation of sklearn.svm.SVC is right here.
Parameter class_weight
doesn't accept 'auto' as an input value. That is your error.
You can solve this by replacing:
'class_weight': ['auto']
with:
'class_weight': ['balanced']
Upvotes: 6
Reputation: 561
This is not a typical Python error, it is GridSearchCV which does not like your auto
argument in class_weight:
tuned_parameters = [
{'kernel': ['linear], 'C':[1, 10], 'class_weight': ['auto' <---
I'am not familiar with, I can only repeat what the error message says:
class_weight must be dict, 'balanced', or None, got: 'auto'
For more infos, you have to look at http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.
Upvotes: 0
Reputation: 5955
You passed in an invalid parameter, 'auto'
for the SVC. The error message tells you what the possible values are: a dict of your classes, balanced, or None. If you want it to use the default behavior, leave it blank or enter None
class_weight : {dict, ‘balanced’}, optional
Generally when I gridsearch a SVC, I use 'class_weight': [None, 'Balanced]
unless I have a specific class balance I want to try
Upvotes: 1