Reputation: 1099
Hi guys is there a clean way to organize this data into its correct columns to geolocate it later?
import pandas as pd
coordinates = {'event': ['1', '2', '3', '4'],
'direction': ['E', 'E,N', 'N,E', 'N'],
'location': ['316904', '314798,5812040', '5811316,314766', '5811309']}
df = pd.DataFrame.from_dict(coordinates)
df
What it need it to look like:
Event direction location easting northing
1 E 316904 316904 NA
2 E,N 314798,5812040 314798 5812040
3 N,E 5811316,314766 314766 5811316
4 N 5811309 NA 5811309
I can split the location with:
df['easting'], df['northing'] = df['location'].str.split(',',1).str
but I need the condition when E THEN 1st value is easting, second northing OR condition when N than 1st value is easting and so on..
any ideas would be gladly appreciated!
Upvotes: 2
Views: 1022
Reputation: 862611
Solution 1:
First split
columns to new ones and then swap values by boolean mask created by startswith
:
df[['easting','northing']] = df['location'].str.split(',',1, expand=True)
mask = df['direction'].str.startswith('N')
df.loc[mask, ['easting','northing']] = df.loc[mask, ['northing','easting']].values
print (df)
event direction location easting northing
0 1 E 316904 316904 None
1 2 E,N 314798,5812040 314798 5812040
2 3 N,E 5811316,314766 314766 5811316
3 4 N 5811309 None 5811309
Solution 2:
First flatten values to helper DataFrame
, then use pivot
and last join to original by join
:
from itertools import chain
direc = df['direction'].str.split(',')
loc = df['location'].str.split(',')
lens = loc.str.len()
df1 = pd.DataFrame({
'direction' : list(chain.from_iterable(direc.tolist())),
'loc' : list(chain.from_iterable(loc.tolist())),
'event' : df['event'].repeat(lens)
})
df2 = df1.pivot('event','direction','loc').rename(columns={'E':'easting','N':'northing'})
print (df2)
direction easting northing
event
1 316904 NaN
2 314798 5812040
3 314766 5811316
4 NaN 5811309
df = df.join(df2, on='event')
print (df)
event direction location easting northing
0 1 E 316904 316904 NaN
1 2 E,N 314798,5812040 314798 5812040
2 3 N,E 5811316,314766 314766 5811316
3 4 N 5811309 NaN 5811309
Upvotes: 3