Reputation: 1808
I want to optimize my process for building a package. I have in pckgname/src some fortran code (f90):
pckgname/src/FortranFile1.f90
pckgname/src/FortranFile2.f90
I am under RStudio. When I build the package, it creates the src-i386 and src-x64 folders, inside which executable files in .o are produced
pckgname/src-i386/FortranFile1.o
pckgname/src-i386/FortranFile2.o
pckgname/src-x64/FortranFile1.o
pckgname/src-x64/FortranFile2.o
then dll files are produced into each of these folders from the .o files:
pckgname/src-i386/dllname.dll
pckgname/src-x64/dllname.dll
thereafter if I want to check the code successfully, I need to manually copy paste the dll into these two folders (in the previous version of the question i wrote code instead of dll which might have led to misunderstandings)
pckgname/inst/libs/x64/dllname.dll
pckgname/libs/X64/dllname.dll
My question is: is it normal that I have to do this or is there a shorter way without having to copy paste by hand dllname.dll
into these two folders? It could be indeed a source of error.
NB: If i don't copy the dlls into the said folders I get the following error messages (translated from the French):
Error in inDL(x, as.logical(local), as.logical(now), ...) :
impossible to load shared object 'C:/Users/username/Documents/pckgname/inst/libs/x64/dllname.dll':
LoadLibrary failure: The specified module can't be found
Error in inDL(x, as.logical(local), as.logical(now), ...) :
impossible to load shared object 'C:/Users/username/Documents/pckgname/libs/x64/dllname.dll':
LoadLibrary failure: The specified module can't be found.
[...]
`cleanup` is deprecated
Upvotes: 1
Views: 476
Reputation: 73
No, it is not normal and there is a solution to this problem. Make use of Makevars.win. The reason for your problem is that .dlls are looking for dependencies in places defined by environment variable PATH and relative paths defined during the linking. Linking is being done when running the command R CMD INSTALL
as it is stated in Mingw preferences plus some custom parameters defined in the file Makevars.win (Windows platform dependent). As soon as the resulting library is copied, the binding to the places where dependent .dlls were situated may become broken, so if you put dlls in a place where typically dependent libraries reside, such as, for instance, $(R_HOME)/bin/$(ARCH)/
,
cp -f <your library relative path>.dll $(R_HOME)/bin/$(ARCH)/<your library>.dll
during the check R will be looking for your dependencies specifically there too, so you will not miss the dependencies. Very crude solution, but it worked in my case.
Upvotes: 0
Reputation: 16930
Is it normal that I have to do this?
No. If path/to/package
is the directory you are developing your package in, and you have everything set up for your package to call your Fortran subroutines correctly (see "The long answer"), you can run
R CMD build path/to/package
at the command prompt, and a tarball will be constructed for you with everything in the right place (note you will need Rtools for this). Then you should be able to run
R CMD check packagename_versionnumber.tar.gz
from the command prompt to check your package, without any problems (stemming from the .dll
files being in the wrong place -- you may have other problems, in which case I would suggest asking a new question with the ERROR, WARNING, or NOTE listed in the question).
If you prefer to work just from R, you can even
devtools::check("path/to/package")
without having to run devtools::build()
or R CMD build
("devtools::check()... [b]undles the package before checking it" -- Hadley's chapter on checking; see also Karl Broman's chapter on checking).
I think your question has to do with three issues potentially:
R CMD build
at the command prompt or devtools::build()
in R will take care of that for you) INSTALL
vs. BUILD
(from the comments to the original version of this answer)You may need quite a bit of advice on the process of developing R packages itself. Some good guides include (in increasing order of detail):
In particular, there are some details about having compiled code in an R package that you may want to be aware of. You may want to first read Hadley's chapter on compiled code (Broman doesn't have one), but then you honestly need to read most of the Writing R Extensions manual, in particular sections 1.1, 1.2, 1.5.4, and 1.6, and all of chapters 5 and 6.
In the mean time, I've setup a GitHub repository here that demonstrates a toy example R package FortranExample
that shows how to correctly setup a package with Fortran code. The steps I took were:
devtools::create("FortranExample")
.DESCRIPTION
, as it set a dependence on R >= 3.5.1, which will throw a warning in check (I have now also revised the "License" field to eliminate a warning about not specifying a proper license).src/
directory and add toy Fortran code there (it just doubles a double value).tools::package_native_routine_registration_skeleton("FortranExample")
to generate the symbol registration code that I placed in src/init.c
(See Writing R Extensions, section 5.4)..Fortran()
to call the Fortran code (placed in R/example_function.R
).#' @useDynLib FortranExample
Roxygen tag to add useDynLib(FortranExample)
to the NAMESPACE
file; if you don't use Roxygen, you can put it there manually (See Writing R Extensions 1.5.4 and 5.2).Now we have a package that's properly set up to deal with the Fortran code. I have tested on a Windows machine (running Windows 8.1 and R 3.5.1) both the paths of running
R CMD build FortranExample
R CMD check FortranExample_0.0.0.9000.tar.gz
from the command prompt, and of running
devtools::check("FortranExample")
from R. There were no errors, and the only warning was the "License" issue mentioned above.
After cleaning up the after-effects of running devtools::check("FortranExample")
(for some reason the cleanup
option is now deprecated; see below for an R function to handle this for you inspired by devtools::clean_dll()
), I used
devtools::install("FortranExample")
to successfully install the package and tested its function, getting:
FortranExample::example_function(2.0)
# [1] 4
The cleanup function I mentioned is
clean_source_dirs <- function(path) {
paths <- file.path(path, paste0("src", c("", "-i386", "-x64")))
file_pattern <- "\\.o|so|dll|a|sl|dyl"
unlink(list.files(path = paths, pattern = file_pattern, full.names = TRUE))
}
Upvotes: 2