Reputation: 373
This list
, for example:
my_list = ['a', 'd', 'a', 'd', 'c','e']
words_2_remove = ['a', 'c']
the output should then be:
my_list = ['d', 'd', 'e']
loc = [0, 2, 4]
I am currently using this:
loc = []
for word in my_list:
if word in words_2_remove:
loc.append( my_list.index(word) )
my_list.remove(word)
Is there a better alternative?
Upvotes: 0
Views: 100
Reputation: 4606
Using list comprehension and enumerate
loc = [idx for idx, item in enumerate(my_list) if item in words_2_remove]
my_list = [i for i in my_list if i not in words_2_remove]
Or using filter:
my_list = list(filter(lambda x: x not in words_2_remove, my_list))
Expanded Explanation:
loc = []
new_my_list = []
for idx, item in enumerate(my_list):
if item in words_2_remove:
loc.append(idx)
else:
new_my_list.append(item)
Upvotes: 0
Reputation: 13687
For bigger arrays using NumPy will be more efficient:
import numpy as np
my_list = np.array(['a', 'd', 'a', 'd', 'c','e'])
words_2_remove = np.array(['a', 'c'])
mask = np.isin(my_list, words_2_remove, invert=True)
# mask will be [False True False True False True]
loc = np.where(~mask)[0]
print(loc)
>>> [0 2 4]
print(my_list[mask])
>>> ['d' 'd' 'e']
And it's also pretty easy to get the complement of the loc
indices:
print(np.where(mask)[0])
>>> [1 3 5]
Timings:
Comparing with list comprehensions version from @Austin.
For original arrays:
my_list = np.array(['a', 'd', 'a', 'd', 'c','e'])
words_2_remove = np.array(['a', 'c'])
%%timeit
mask = np.isin(my_list, words_2_remove, invert=True)
loc = np.where(~mask)[0]
>>> 11 µs ± 53.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
my_list =['a', 'd', 'a', 'd', 'c','e']
words_2_remove = ['a', 'c']
%%timeit
loc = [i for i, x in enumerate(my_list) if x in words_2_remove]
res = [x for x in my_list if x not in words_2_remove]
>>> 1.31 µs ± 7.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
And for big arrays:
n = 10 ** 3
my_list = np.array(['a', 'd', 'a', 'd', 'c','e'] * n)
words_2_remove = np.array(['a', 'c'])
%%timeit
mask = np.isin(my_list, words_2_remove, invert=True)
loc = np.where(~mask)[0]
>>> 114 µs ± 906 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
my_list =['a', 'd', 'a', 'd', 'c','e'] * n
words_2_remove = ['a', 'c']
%%timeit
loc = [i for i, x in enumerate(my_list) if x in words_2_remove]
res = [x for x in my_list if x not in words_2_remove]
>>> 841 µs ± 677 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Depending on the use case, you can choose what fits better.
Further reading:
Docs on np.isin
: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.isin.html
Converting boolean mask array to indices: How to turn a boolean array into index array in numpy
Docs on np.where
: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.where.html
More on indexing with NumPy: https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.indexing.html
Upvotes: 1
Reputation: 26039
Do two list-comprehensions:
my_list =['a', 'd', 'a', 'd', 'c','e']
words_2_remove = ['a', 'c']
loc = [i for i, x in enumerate(my_list) if x in words_2_remove]
my_list = [x for x in my_list if x not in words_2_remove]
print(my_list) # ['d', 'd', 'e']
print(loc) # [0, 2, 4]
Upvotes: 3