Reputation: 423
I have a dataset in the RDD
format, where each entry is an Array[Array[String]]
.
Each entry is an array of key/value
pairs, and each entry may not contain all possible keys.
An example of a possible entry is [[K1, V1], [K2, V2], [K3, V3], [K5, V5], [K7, V7]]
and another might be [[K1, V1], [K3, V3], [K21, V21]]
.
What I hope to achieve is to bring this RDD
into a dataframe format. K1
, K2
, etc. always represent the same String
over each of the rows (i.e. K1
is always "type" and K2
is always "color"), and I want to use these as the columns. The values
V1
, V2
, etc. differ over rows, and I want to use these to populate the values
for the columns.
I'm not sure how to achieve this, so I would appreciate any help/pointers.
Upvotes: 0
Views: 1283
Reputation: 2855
You can do something like,
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SparkSession}
import java.util.UUID
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType
val l1: Array[Array[String]] = Array(
Array[String]("K1", "V1"),
Array[String]("K2", "V2"),
Array[String]("K3", "V3"),
Array[String]("K5", "V5"),
Array[String]("K7", "V7"))
val l2: Array[Array[String]] = Array(
Array[String]("K1", "V1"),
Array[String]("K3", "V3"),
Array[String]("K21", "V21"))
val spark = SparkSession.builder().master("local").getOrCreate()
val sc = spark.sparkContext
val rdd = sc.parallelize(Array(l1, l2)).flatMap(x => {
val id = UUID.randomUUID().toString
x.map(y => Row(id, y(0), y(1)))
})
val schema = new StructType()
.add("id", "String")
.add("key", "String")
.add("value", "String")
val df = spark
.createDataFrame(rdd, schema)
.groupBy("id")
.pivot("key").agg(last("value"))
.drop("id")
df.printSchema()
df.show(false)
The schema and output looks something like,
root
|-- K1: string (nullable = true)
|-- K2: string (nullable = true)
|-- K21: string (nullable = true)
|-- K3: string (nullable = true)
|-- K5: string (nullable = true)
|-- K7: string (nullable = true)
+---+----+----+---+----+----+
|K1 |K2 |K21 |K3 |K5 |K7 |
+---+----+----+---+----+----+
|V1 |null|V21 |V3 |null|null|
|V1 |V2 |null|V3 |V5 |V7 |
+---+----+----+---+----+----+
Note: this will produce null
in missing places as shown in outputs. pivot
basically transposes the data set based on some column
Hope this answers your question!
Upvotes: 1