nevertoolateyet
nevertoolateyet

Reputation: 131

Comparing today date with date in dataframe

Comparing today date with date in dataframe Sample Data

id        date
1        1/2/2018
2        1/5/2019
3        5/3/2018
4        23/11/2018

Desired output

id        date
2        1/5/2019
4        23/11/2018

My current code

dfdateList = pd.DataFrame()
dfDate= self.df[["id", "date"]]
today = datetime.datetime.now()
today = today.strftime("%d/%m/%Y").lstrip("0").replace(" 0", "")
expList = []
for dates in dfDate["date"]:
    if dates <= today:
        expList.append(dates)

dfdateList = pd.DataFrame(expList)   

Currently my code is printing every single line despite the conditions, can anyone guide me? thanks

Upvotes: 1

Views: 3612

Answers (1)

fuglede
fuglede

Reputation: 18201

Pandas has native support for a large class of operations on datetimes, so one solution here would be to use pd.to_datetime to convert your dates from strings to pandas' representation of datetimes, pd.Timestamp, then just create a mask based on the current date:

df['date'] = pd.to_datetime(df['date'], dayfirst=True)
df[df['date'] > pd.Timestamp.now()]

For example:

In [34]: df['date'] = pd.to_datetime(df['date'], dayfirst=True)

In [36]: df
Out[36]:
   id       date
0   1 2018-02-01
1   2 2019-05-01
2   3 2018-03-05
3   4 2018-11-23

In [37]: df[df['date'] > pd.Timestamp.now()]
Out[37]:
   id       date
1   2 2019-05-01
3   4 2018-11-23

Upvotes: 3

Related Questions