Reputation: 617
I would like to implement below requirement using Spark dataframes to compare 2 text/csv
files. Ideally, File1.txt should compare with File2.txt and result should be in other txt file with flag as (SAME/UPDATE/INSERT/DELETE).
UPDATE - if any record values are updated in file2 when compared to file1 INSERT - if a new record exist in file2 DELETE - only if the record exist in file1 (not in file2) SAME - if same record exist in both files
File1.txt
NO DEPT NAME SAL
1 IT RAM 1000
2 IT SRI 600
3 HR GOPI 1500
5 HW MAHI 700
File2.txt
NO DEPT NAME SAL
1 IT RAM 1000
2 IT SRI 900
4 MT SUMP 1200
5 HW MAHI 700
Outputfile.txt
NO DEPT NAME SAL FLAG
1 IT RAM 1000 S
2 IT SRI 900 U
4 MT SUMP 1200 I
5 HW MAHI 700 S
3 HR GOPI 1500 D
So far, i did below coding. But not able to proceed further. Pls help.
from pyspark.shell import spark
sc = spark.sparkContext
df1 = spark.read.option("header","true").option("delimiter", ",").csv("C:\\inputs\\file1.csv")
df2 = spark.read.option("header","true").option("delimiter", ",").csv("C:\\inputs\\file2.csv")
df1.createOrReplaceTempView("table1")
df2.createOrReplaceTempView("table2")
sqlDF1 = spark.sql( "select * from table1" )
sqlDF2 = spark.sql( "select * from table2" )
leftJoinDF = sqlDF1.join(sqlDF2, 'id', how='left')
rightJoinDF = sqlDF1.join(sqlDF2, 'id', how='right')
innerJoinDF = sqlDF1.join(sqlDF2, 'id')
Is there any way if we merge the data, after performing leftJoin, rightJoin, innerJoin. With this whether i could get desired output or any other way.
Thanks,
Upvotes: 1
Views: 1391
Reputation: 2200
You can find my solution below. I create 4 dataframe for SAME/UPDATE/INSERT/DELETE cases and then union them
>>> from functools import reduce
>>> from pyspark.sql import DataFrame
>>> import pyspark.sql.functions as F
>>> df1 = sc.parallelize([
... (1,'IT','RAM',1000),
... (2,'IT','SRI',600),
... (3,'HR','GOPI',1500),
... (5,'HW','MAHI',700)
... ]).toDF(['NO','DEPT','NAME','SAL'])
>>> df1.show()
+---+----+----+----+
| NO|DEPT|NAME| SAL|
+---+----+----+----+
| 1| IT| RAM|1000|
| 2| IT| SRI| 600|
| 3| HR|GOPI|1500|
| 5| HW|MAHI| 700|
+---+----+----+----+
>>> df2 = sc.parallelize([
... (1,'IT','RAM',1000),
... (2,'IT','SRI',900),
... (4,'MT','SUMP',1200),
... (5,'HW','MAHI',700)
... ]).toDF(['NO','DEPT','NAME','SAL'])
>>> df2.show()
+---+----+----+----+
| NO|DEPT|NAME| SAL|
+---+----+----+----+
| 1| IT| RAM|1000|
| 2| IT| SRI| 900|
| 4| MT|SUMP|1200|
| 5| HW|MAHI| 700|
+---+----+----+----+
#DELETE
>>> df_d = df1.join(df2, df1.NO == df2.NO, 'left').filter(F.isnull(df2.NO)).select(df1.NO,df1.DEPT,df1.NAME,df1.SAL, F.lit('D').alias('FLAG'))
#INSERT
>>> df_i = df1.join(df2, df1.NO == df2.NO, 'right').filter(F.isnull(df1.NO)).select(df2.NO,df2.DEPT,df2.NAME,df2.SAL, F.lit('I').alias('FLAG'))
#SAME/
>>> df_s = df1.join(df2, df1.NO == df2.NO, 'inner').filter(F.concat(df2.NO,df2.DEPT,df2.NAME,df2.SAL) == F.concat(df1.NO,df1.DEPT,df1.NAME,df1.SAL)).\
... select(df1.NO,df1.DEPT,df1.NAME,df1.SAL, F.lit('S').alias('FLAG'))
#UPDATE
>>> df_u = df1.join(df2, df1.NO == df2.NO, 'inner').filter(F.concat(df2.NO,df2.DEPT,df2.NAME,df2.SAL) != F.concat(df1.NO,df1.DEPT,df1.NAME,df1.SAL)).\
... select(df2.NO,df2.DEPT,df2.NAME,df2.SAL, F.lit('U').alias('FLAG'))
>>> dfs = [df_s,df_u,df_u,df_i]
>>> df = reduce(DataFrame.unionAll, dfs)
>>>
>>> df.show()
+---+----+----+----+----+
| NO|DEPT|NAME| SAL|FLAG|
+---+----+----+----+----+
| 5| HW|MAHI| 700| S|
| 1| IT| RAM|1000| S|
| 2| IT| SRI| 900| U|
| 2| IT| SRI| 900| U|
| 4| MT|SUMP|1200| I|
+---+----+----+----+----+
Upvotes: 1
Reputation: 2545
You can use 'outer'
join after concatenating all columns first. Then create an udf
for flags.
import pyspark.sql.functions as F
df = sql.createDataFrame([
(1,'IT','RAM',1000),
(2,'IT','SRI',600),
(3,'HR','GOPI',1500),
(5,'HW','MAHI',700)],
['NO' ,'DEPT', 'NAME', 'SAL' ])
df1 = sql.createDataFrame([
(1,'IT','RAM',1000),
(2,'IT','SRI',900),
(4,'MT','SUMP',1200 ),
(5,'HW','MAHI',700)],
['NO' ,'DEPT', 'NAME', 'SAL' ])
def flags(x,y):
if not x:
return y+'-I'
if not y:
return x+'-D'
if x == y:
return x+'-S'
return y+'-U'
_cols = df.columns
flag_udf = F.udf(lambda x,y: flags(x,y),StringType())
df = df.select(['NO']+ [F.concat_ws('-', *[F.col(_c) for _c in df.columns]).alias('f1')])\
.join(df1.select(['NO']+ [F.concat_ws('-', *[F.col(_c1) for _c1 in df1.columns]).alias('f2')]), 'NO', 'outer')\
.select(flag_udf('f1','f2').alias('combined'))
df.show()
The result will be,
+----------------+
| combined|
+----------------+
| 5-HW-MAHI-700-S|
| 1-IT-RAM-1000-S|
|3-HR-GOPI-1500-D|
| 2-IT-SRI-900-U|
|4-MT-SUMP-1200-I|
+----------------+
Finally, split the combined
column.
split_col = F.split(df['combined'], '-')
df = df.select([split_col.getItem(i).alias(s) for i,s in enumerate(_cols+['FLAG'])])
df.show()
You get the desired output,
+---+----+----+----+----+
| NO|DEPT|NAME| SAL|FLAG|
+---+----+----+----+----+
| 5| HW|MAHI| 700| S|
| 1| IT| RAM|1000| S|
| 3| HR|GOPI|1500| D|
| 2| IT| SRI| 900| U|
| 4| MT|SUMP|1200| I|
+---+----+----+----+----+
Upvotes: 0