Reputation: 371
I would like to reproduce the results of example 1 on the page 280 in the original lasso paper.
The model is y = X*beta + sigma*epsilon
where epsilon
is N(0,1)
Simulate 50 data sets consisting of 20/20/200 observations for training/validation/test sets.
True beta = (3, 1.5, 0, 0, 2, 0, 0, 0)
sigma = 3
Pairwise correlation between x_i
and x_j
are set to be corr(i,j) = 0.5^|i-j|
I used training, validation, test splitting approach to find the estimates of test MSE
. I tried to compute a few test MSE
estimates by hand to check if I'm on the right way before simulation repetitions. But it seems the test MSE
estimates I find (between [9, 15]) are much larger than the ones given by original paper (with median 2.43). I attach the code that I used to generate the test MSE
's.
Any suggestion, please?
library(MASS)
library(glmnet)
simfun <- function(trainn = 20, validationn = 20, testn = 200, corr =0.5, sigma = 3, beta) {
n <- trainn + testn + validationn
p <- length(beta)
Covmatrix <- outer(1:p, 1:p, function(x,y){corr^abs(x-y)})
X <- mvrnorm(n, rep(0,p), Covmatrix) # MASS
X <- X[sample(n),]
y <- X%*%beta + rnorm(n,mean = 0,sd=sigma)
trainx <- X[1:trainn,]
validationx <- X[(trainn+1):(trainn+validationn),]
testx <- X[(trainn+validationn+1):n,]
trainy <- y[1:trainn,]
validationy <- y[(trainn+1):(trainn+validationn),]
testy <- y[(trainn+validationn+1):n,]
list(trainx = trainx, validationx = validationx, testx = testx,
trainy = trainy, validationy = validationy, testy = testy)
}
beta <- c(3,1.5,0,0,2,0,0,0)
data <- simfun(20,20,200,corr=0.5,sigma=3,beta)
trainx <- data$trainx
trainy <- data$trainy
validationx <- data$validationx
validationy <- data$validationy
testx <- data$testx
testy <- data$testy
# training: find betas for all the lambdas
betas <- coef(glmnet(trainx,trainy,alpha=1))
# validation: compute validation test error for each lambda and find the minimum
J.val <- colMeans((validationy-cbind(1,validationx)%*%betas)^2)
beta.opt <- betas[, which.min(J.val)]
# test
test.mse <- mean((testy-cbind(1,testx)%*%beta.opt)^2)
test.mse
Upvotes: 0
Views: 1124
Reputation: 953
This is simulation study, so I think you don't have to use training-validation approach. It just cause variation due to its randomness. You can implement expected test error using its definition.
Take average
set.seed(1)
simpfun <- function(n_train = 20, n_test = 10, simul = 50, corr = .5, sigma = 3, beta = c(3, 1.5, 0, 0, 2, 0, 0, 0), lam_grid = 10^seq(-3, 5)) {
require(foreach)
require(tidyverse)
# true model
p <- length(beta)
Covmatrix <- outer(
1:p, 1:p,
function(x, y) {
corr^abs(x - y)
}
)
X <- foreach(i = 1:simul, .combine = rbind) %do% {
MASS::mvrnorm(n_train, rep(0, p), Covmatrix)
}
eps <- rnorm(n_train, mean = 0, sd = sigma)
y <- X %*% beta + eps # generate true model
# generate test set
test <- MASS::mvrnorm(n_test, rep(0, p), Covmatrix)
te_y <- test %*% beta + rnorm(n_test, mean = 0, sd = sigma) # test y
simul_id <- gl(simul, k = n_train, labels = 1:n_train)
# expected test error
train <-
y %>%
as_tibble() %>%
mutate(m_id = simul_id) %>%
group_by(m_id) %>% # for each simulation
do(yhat = predict(glmnet::cv.glmnet(X, y, alpha = 1, lambda = lam_grid), newx = test, s = "lambda.min")) # choose the smallest lambda
MSE <- # (y0 - fhat0)^2
sapply(train$yhat, function(x) {
mean((x - te_y)^2)
})
mean(MSE) # 1/simul * MSE
}
simpfun()
Edit: for tuning parameter,
find_lambda <- function(.data, x, y, lambda, x_val, y_val) {
.data %>%
do(
tuning = predict(glmnet::glmnet(x, y, alpha = 1, lambda = lambda), newx = x_val)
) %>%
do( # tuning parameter: validation set
mse = apply(.$tuning, 2, function(yhat, y) {
mean((y - yhat)^2)
}, y = y_val)
) %>%
mutate(mse_min = min(mse)) %>%
mutate(lam_choose = lambda[mse == mse_min]) # minimize mse
}
Using this function, it is possible to add validation step
simpfun <- function(n_train = 20, n_val = 20, n_test = 10, simul = 50, corr = .5, sigma = 3, beta = c(3, 1.5, 0, 0, 2, 0, 0, 0), lam_grid = 10^seq(10, -1, length.out = 100)) {
require(foreach)
require(tidyverse)
# true model
p <- length(beta)
Covmatrix <- outer(
1:p, 1:p,
function(x, y) {
corr^abs(x - y)
}
)
X <- foreach(i = 1:simul, .combine = rbind) %do% {
MASS::mvrnorm(n_train, rep(0, p), Covmatrix)
}
eps <- rnorm(n_train, mean = 0, sd = sigma)
y <- X %*% beta + eps # generate true model
# generate validation set
val <- MASS::mvrnorm(n_val, rep(0, p), Covmatrix)
val_y <- val %*% beta + rnorm(n_val, mean = 0, sd = sigma) # validation y
# generate test set
test <- MASS::mvrnorm(n_test, rep(0, p), Covmatrix)
te_y <- test %*% beta + rnorm(n_test, mean = 0, sd = sigma) # test y
simul_id <- gl(simul, k = n_train, labels = 1:n_train)
Y <-
y %>%
as_tibble() %>%
mutate(m_id = simul_id) %>%
group_by(m_id) %>% # for each simulation: repeat
rename(y = V1)
# Tuning parameter
Tuning <-
Y %>%
find_lambda(x = X, y = y, lambda = lam_grid, x_val = val, y_val = val_y)
# expected test error
test_mse <-
Tuning %>%
mutate(
test_err = mean(
(predict(glmnet::glmnet(X, y, alpha = 1, lambda = lam_choose), newx = test) - te_y)^2
)
) %>%
select(test_err) %>%
pull()
mean(test_mse)
}
simpfun()
Upvotes: 1