Reputation: 1504
I have a dataset made of True and False.
Sample Table:
A B C
0 False True False
1 False False False
2 True True False
3 True True True
4 False True False
5 True True True
6 True False False
7 True False True
8 False True True
9 True False False
I want to count the number of consecutive True values for every column, and if there's more than one consecutive True series, I want to get the max of it.
For the table above, I would get:
length = [3, 4, 2]
I found similar threads but none resolved my problem.
Since I do and will have many more columns(products), I need to do this regardless of the column name, for the whole table and get an array as the result.
And if possible, I'd like to learn the index of the first true of the longest sequence aka where this longest true series starts, so the result would be for this one:
index = [5, 2, 7]
Upvotes: 16
Views: 8973
Reputation: 221614
We would basically leverage two philosophies - Catching shifts on compared array
and Offsetting each column results so that we could vectorize it
.
So, with that intention set, here's one way to achieve the desired results -
def maxisland_start_len_mask(a, fillna_index = -1, fillna_len = 0):
# a is a boolean array
pad = np.zeros(a.shape[1],dtype=bool)
mask = np.vstack((pad, a, pad))
mask_step = mask[1:] != mask[:-1]
idx = np.flatnonzero(mask_step.T)
island_starts = idx[::2]
island_lens = idx[1::2] - idx[::2]
n_islands_percol = mask_step.sum(0)//2
bins = np.repeat(np.arange(a.shape[1]),n_islands_percol)
scale = island_lens.max()+1
scaled_idx = np.argsort(scale*bins + island_lens)
grp_shift_idx = np.r_[0,n_islands_percol.cumsum()]
max_island_starts = island_starts[scaled_idx[grp_shift_idx[1:]-1]]
max_island_percol_start = max_island_starts%(a.shape[0]+1)
valid = n_islands_percol!=0
cut_idx = grp_shift_idx[:-1][valid]
max_island_percol_len = np.maximum.reduceat(island_lens, cut_idx)
out_len = np.full(a.shape[1], fillna_len, dtype=int)
out_len[valid] = max_island_percol_len
out_index = np.where(valid,max_island_percol_start,fillna_index)
return out_index, out_len
Sample run -
# Generic case to handle all 0s columns
In [112]: a
Out[112]:
array([[False, False, False],
[False, False, False],
[ True, False, False],
[ True, False, True],
[False, False, False],
[ True, False, True],
[ True, False, False],
[ True, False, True],
[False, False, True],
[ True, False, False]])
In [117]: starts,lens = maxisland_start_len_mask(a, fillna_index=-1, fillna_len=0)
In [118]: starts
Out[118]: array([ 5, -1, 7])
In [119]: lens
Out[119]: array([3, 0, 2])
Upvotes: 7
Reputation: 863156
Solution should be simplify, if always at least one True
per column:
b = df.cumsum()
c = b.sub(b.mask(df).ffill().fillna(0)).astype(int)
print (c)
A B C
0 0 1 0
1 0 0 0
2 1 1 0
3 2 2 1
4 0 3 0
5 1 4 1
6 2 0 0
7 3 0 1
8 0 1 2
9 1 0 0
#get maximal value of all columns
length = c.max().tolist()
print (length)
[3, 4, 2]
#get indexes by maximal value, subtract length and add 1
index = c.idxmax().sub(length).add(1).tolist()
print (index)
[5, 2, 7]
Detail:
print (pd.concat([b,
b.mask(df),
b.mask(df).ffill(),
b.mask(df).ffill().fillna(0),
b.sub(b.mask(df).ffill().fillna(0)).astype(int)
], axis=1,
keys=('cumsum', 'mask', 'ffill', 'fillna','sub')))
cumsum mask ffill fillna sub
A B C A B C A B C A B C A B C
0 0 1 0 0.0 NaN 0.0 0.0 NaN 0.0 0.0 0.0 0.0 0 1 0
1 0 1 0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0 0 0
2 1 2 0 NaN NaN 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1 1 0
3 2 3 1 NaN NaN NaN 0.0 1.0 0.0 0.0 1.0 0.0 2 2 1
4 2 4 1 2.0 NaN 1.0 2.0 1.0 1.0 2.0 1.0 1.0 0 3 0
5 3 5 2 NaN NaN NaN 2.0 1.0 1.0 2.0 1.0 1.0 1 4 1
6 4 5 2 NaN 5.0 2.0 2.0 5.0 2.0 2.0 5.0 2.0 2 0 0
7 5 5 3 NaN 5.0 NaN 2.0 5.0 2.0 2.0 5.0 2.0 3 0 1
8 5 6 4 5.0 NaN NaN 5.0 5.0 2.0 5.0 5.0 2.0 0 1 2
9 6 6 4 NaN 6.0 4.0 5.0 6.0 4.0 5.0 6.0 4.0 1 0 0
EDIT:
General solution working with only False
columns - add numpy.where
with boolean mask created by DataFrame.any
:
print (df)
A B C
0 False True False
1 False False False
2 True True False
3 True True False
4 False True False
5 True True False
6 True False False
7 True False False
8 False True False
9 True False False
b = df.cumsum()
c = b.sub(b.mask(df).ffill().fillna(0)).astype(int)
mask = df.any()
length = np.where(mask, c.max(), -1).tolist()
print (length)
[3, 4, -1]
index = np.where(mask, c.idxmax().sub(c.max()).add(1), 0).tolist()
print (index)
[5, 2, 0]
Upvotes: 21