Reputation: 465
I have a file "specieslist.txt" which contain the following information:
Bacillus,genus
Borrelia,genus
Burkholderia,genus
Campylobacter,genus
Now, I want python to look for a variable in the first column (in this example "Campylobacter") and return the value of the second ("genus"). I wrote the following code
import csv
import pandas as pd
species_import = 'Campylobacter'
df = pd.read_csv('specieslist.txt', header=None, names = ['species', 'level'] )
input = df.loc[df['species'] == species_import]
print (input['level'])
However, my code return too much, while I am only want "genus"
3 genus
Name: level, dtype: object
Upvotes: 3
Views: 2293
Reputation: 164613
Performance of various methods, to demonstrate when it is useful to use next(...)
.
n = 10**6
df = pd.DataFrame({'species': ['b']+['a']*n, 'level': np.arange(n+1)})
def get_first_val(val):
try:
return df.loc[df['species'] == val, 'level'].iat[0]
except IndexError:
return 'no match'
%timeit next(iter(df.loc[df['species'] == 'b', 'level']), 'no match') # 123 ms per loop
%timeit get_first_val('b') # 125 ms per loop
%timeit next(idx for idx, val in enumerate(df['species']) if val == 'b') # 20.3 µs per loop
Upvotes: 3
Reputation: 36
# Change the last line of your code to
print(input['level'].values)
# For Explanation refer below code
import csv
import pandas as pd
species_import = 'Campylobacter'
df = pd.read_csv('specieslist.txt', header=None, names = ['species', 'level'] )
input = df['species'] == species_import # return a pandas dataFrame
print(type(df[input])) # return a Pandas DataFrame
print(type(df[input]['level'])) # return a Pandas Series
# To obtain the value from this Series.
print(df[input]['level'].values) # return 'genus'
Upvotes: 0
Reputation: 294218
get
With pandas.Series.get
, you can return either a scalar value if the 'species'
is unique or a pandas.Series
if not unique.
f = df.set_index('species').level.get
f('Campylobacter')
'genus'
If not in the data, you can provide a default
f('X', 'Not In Data')
'Not In Data'
We could also use dict.get
and only return scalars. If not unique, this will return the last one.
f = dict(zip(df.species, df.level)).get
If you want to return the first one, you can do that a few ways
f = dict(zip(df.species[::-1], df.level[::-1])).get
Or
f = df.drop_duplicates('species').pipe(
lambda d: dict(zip(d.species, d.level)).get
)
Upvotes: 2
Reputation: 862406
You can select first value of Series by iat
:
species_import = 'Campylobacter'
out = df.loc[df['species'] == species_import, 'level'].iat[0]
#alternative
#out = df.loc[df['species'] == species_import, 'level'].values[0]
print (out)
genus
Better solution working if no value matched and empty Series
is returned - it return no match
:
@jpp comment
This solution is better only when you have a large series and the matched value is expected to be near the top
species_import = 'Campylobacter'
out = next(iter(df.loc[df['species'] == species_import, 'level']), 'no match')
print (out)
genus
EDIT:
Idea from comments, thanks @jpp:
def get_first_val(val):
try:
return df.loc[df['species'] == val, 'level'].iat[0]
except IndexError:
return 'no match'
print (get_first_val(species_import))
genus
print (get_first_val('aaa'))
no match
EDIT:
df = pd.DataFrame({'species':['a'] * 10000 + ['b'], 'level':np.arange(10001)})
def get_first_val(val):
try:
return df.loc[df['species'] == val, 'level'].iat[0]
except IndexError:
return 'no match'
In [232]: %timeit next(iter(df.loc[df['species'] == 'a', 'level']), 'no match')
1.3 ms ± 33.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [233]: %timeit (get_first_val('a'))
1.1 ms ± 21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [235]: %timeit (get_first_val('b'))
1.48 ms ± 206 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [236]: %timeit next(iter(df.loc[df['species'] == 'b', 'level']), 'no match')
1.24 ms ± 10.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Upvotes: 5