Reputation: 433
I am trying to calculate manually the r-squared given by lm() in R
Considering:
fit <- lm(obs_values ~ preds_values, df)
with sd(df$obs_values) == sd(df$preds_values)
and mean(df$obs_values) == mean(df$preds_values)
To do so I can extract the residuals by doing
res_a = residuals(fit)
and then inject them in the formula as :
y = sum( (df$obs_values - mean(df$obs_values))^2 )
r-squared = 1 - sum(res_a^2)/y
Here I get the expected r-squared
Now, I would like to get the residual manually.
It should be as trivial as :
res_b = df$obs_values - df$predss_values
, but for some reason, res_b is different than res_a...
Upvotes: 0
Views: 7377
Reputation: 6778
You have many options:
## Residuals manually
# option 1
beta_hat <- coef(fit)
obs_values_hat <- beta_hat["(Intercept)"] + beta_hat["preds_values"] * preds_values
u_hat <- obs_values - obs_values_hat # residuals
# option 2
obs_values_hat <- fitted(fit)
u_hat <- obs_values - obs_values_hat # residuals
# (option 3 - not manually) or just u_hat <- resid(fit)
## R-squared manually
# option 1
var(obs_values_hat) / var(obs_values)
# option 2
1 - var(u_hat) / var(obs_values)
# option 3
cor(obs_values, obs_values_hat)^2
Upvotes: 0
Reputation: 73405
You can't just do y - x
in a regression y ~ x
to get residuals. Where have regression coefficients gone?
fit <- lm(y ~ x)
b <- coef(fit)
resi <- y - (b[1] + b[2] * x)
Upvotes: 1