Reputation: 564
I have a question that I find kind of hard to explain with a MRE and in an easy way to answer, mostly because I don't fully understand where the problem lies myself. So that's my sorry for being vague preamble.
I have a tibble with many sample and reference measurements, for which I want
to do some linear interpolation for each sample. I do this now by taking out
all the reference measurements, rescaling them to sample measurements using
approx
, and then patching it back in. But because I take it out first, I
cannot do it nicely in a group_by dplyr pipe way. right now I do it with a
really ugly workaround where I add empty (NA) newly created columns to the
sample tibble, then do it with a for-loop.
So my question is really: how can I implement the approx part within groups
into the pipe, so that I can do everything within groups? I've experimented
with dplyr::do()
, and ran into the vignette on "programming with dplyr", but
searching mostly gives me broom::augment
and lm
stuff that I think operates
differently... (e.g. see
Using approx() with groups in dplyr). This thread also seems promising: How do you use approx() inside of mutate_at()?
Somebody on irc recommended using a conditional mutate, with case_when
, but I
don't fully understand where and how within this context yet.
I think the problem lies in the fact that I want to filter out part of the data for the following mutate operations, but the mutate operations rely on the grouped data that I just filtered out, if that makes any sense.
Here's a MWE:
library(tidyverse) # or just dplyr, tibble
# create fake data
data <- data.frame(
# in reality a dttm with the measurement time
timestamp = c(rep("a", 7), rep("b", 7), rep("c", 7)),
# measurement cycle, normally 40 for sample, 41 for reference
cycle = rep(c(rep(1:3, 2), 4), 3),
# wheather the measurement is a reference or a sample
isref = rep(c(rep(FALSE, 3), rep(TRUE, 4)), 3),
# measurement intensity for mass 44
r44 = c(28:26, 30:26, 36, 33, 31, 38, 34, 33, 31, 18, 16, 15, 19, 18, 17)) %>%
# measurement intensity for mass 45, normally also masses up to mass 49
mutate(r45 = r44 + rnorm(21, 20))
# of course this could be tidied up to "intensity" with a new column "mass"
# (44, 45, ...), but that would make making comparisons even harder...
# overview plot
data %>%
ggplot(aes(x = cycle, y = r44, colour = isref)) +
geom_line() +
geom_line(aes(y = r45), linetype = 2) +
geom_point() +
geom_point(aes(y = r45), shape = 1) +
facet_grid(~ timestamp)
# what I would like to do
data %>%
group_by(timestamp) %>%
do(target_cycle = approx(x = data %>% filter(isref) %>% pull(r44),
y = data %>% filter(isref) %>% pull(cycle),
xout = data %>% filter(!isref) %>% pull(r44))$y) %>%
unnest()
# immediately append this new column to the original dataframe for all the
# samples (!isref) and then apply another approx for those values.
# here's my current attempt for one of the timestamps
matchref <- function(dat) {
# split the data into sample gas and reference gas
ref <- filter(dat, isref)
smp <- filter(dat, !isref)
# calculate the "target cycle", the points at which the reference intensity
# 44 matches the sample intensity 44 with linear interpolation
target_cycle <- approx(x = ref$r44,
y = ref$cycle, xout = smp$r44)
# append the target cycle to the sample gas
smp <- smp %>%
group_by(timestamp) %>%
mutate(target = target_cycle$y)
# linearly interpolate each reference gas to the target cycle
ref <- ref %>%
group_by(timestamp) %>%
# this is needed because the reference has one more cycle
mutate(target = c(target_cycle$y, NA)) %>%
# filter out all the failed ones (no interpolation possible)
filter(!is.na(target)) %>%
# calculate interpolated value based on r44 interpolation (i.e., don't
# actually interpolate this value but shift it based on the 44
# interpolation)
mutate(r44 = approx(x = cycle, y = r44, xout = target)$y,
r45 = approx(x = cycle, y = r45, xout = target)$y) %>%
select(timestamp, target, r44:r45)
# add new reference gas intensities to the correct sample gasses by the target cycle
left_join(smp, ref, by = c("time", "target"))
}
matchref(data)
# and because now "target" must be length 3 (the group size) or one, not 9
# I have to create this ugly for-loop
# for which I create a copy of data that has the new columns to be created
mr <- data %>%
# filter the sample gasses (since we convert ref to sample)
filter(!isref) %>%
# add empty new columns
mutate(target = NA, r44 = NA, r45 = NA)
# apply matchref for each group timestamp
for (grp in unique(data$timestamp)) {
mr[mr$timestamp == grp, ] <- matchref(data %>% filter(timestamp == grp))
}
Upvotes: 1
Views: 3014
Reputation: 12074
Here's one approach that spreads the references and samples to new columns. I drop r45
for simplicity in this example.
data %>%
select(-r45) %>%
mutate(isref = ifelse(isref, "REF", "SAMP")) %>%
spread(isref, r44) %>%
group_by(timestamp) %>%
mutate(target_cycle = approx(x = REF, y = cycle, xout = SAMP)$y) %>%
ungroup
gives,
# timestamp cycle REF SAMP target_cycle
# <fct> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 30 28 3
# 2 a 2 29 27 4
# 3 a 3 28 26 NA
# 4 a 4 27 NA NA
# 5 b 1 31 26 NA
# 6 b 2 38 36 2.5
# 7 b 3 34 33 4
# 8 b 4 33 NA NA
# 9 c 1 15 31 NA
# 10 c 2 19 18 3
# 11 c 3 18 16 2.5
# 12 c 4 17 NA NA
Edit to address comment below
To retain r45
you can use a gather-unite-spread approach like this:
df %>%
mutate(isref = ifelse(isref, "REF", "SAMP")) %>%
gather(r, value, r44:r45) %>%
unite(ru, r, isref, sep = "_") %>%
spread(ru, value) %>%
group_by(timestamp) %>%
mutate(target_cycle_r44 = approx(x = r44_REF, y = cycle, xout = r44_SAMP)$y) %>%
ungroup
giving,
# # A tibble: 12 x 7
# timestamp cycle r44_REF r44_SAMP r45_REF r45_SAMP target_cycle_r44
# <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 30 28 49.5 47.2 3
# 2 a 2 29 27 48.8 48.7 4
# 3 a 3 28 26 47.2 46.8 NA
# 4 a 4 27 NA 47.9 NA NA
# 5 b 1 31 26 51.4 45.7 NA
# 6 b 2 38 36 57.5 55.9 2.5
# 7 b 3 34 33 54.3 52.4 4
# 8 b 4 33 NA 52.0 NA NA
# 9 c 1 15 31 36.0 51.7 NA
# 10 c 2 19 18 39.1 37.9 3
# 11 c 3 18 16 39.2 35.3 2.5
# 12 c 4 17 NA 39.0 NA NA
Upvotes: 2