Reputation: 464
I'm trying to use the tf-sentencepiece operation in my model found here https://github.com/google/sentencepiece/tree/master/tensorflow
There is no issue building the model and getting a saved_model.pb file with variables and assets. However, if I try to use the docker image for tensorflow/serving, it says
Loading servable: {name: model version: 1} failed:
Not found: Op type not registered 'SentencepieceEncodeSparse' in binary running on 0ccbcd3998d1.
Make sure the Op and Kernel are registered in the binary running in this process.
Note that if you are loading a saved graph which used ops from tf.contrib, accessing
(e.g.) `tf.contrib.resampler` should be done before importing the graph,
as contrib ops are lazily registered when the module is first accessed.
I am unfamiliar with how to build anything manually, and was hoping that I could do this without many changes.
Upvotes: 1
Views: 1507
Reputation: 406
One approach would be to:
Pull a docker development image
$ docker pull tensorflow/serving:latest-devel
In the container, make your code changes
$ docker run -it tensorflow/serving:latest-devel
Modify the code to add the op dependency here.
In the container, build TensorFlow Serving
container:$ tensorflow_serving/model_servers:tensorflow_model_server && cp bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server /usr/local/bin/
Use the exit command to exit the container
Look up the container ID:
$ docker ps
Use that container ID to commit the development image:
$ docker commit $USER/tf-serving-devel-custom-op
Now build a serving container using the development container as the source
$ mkdir /tmp/tfserving
$ cd /tmp/tfserving
$ git clone https://github.com/tensorflow/serving .
$ docker build -t $USER/tensorflow-serving --build-arg TF_SERVING_BUILD_IMAGE=$USER/tf-serving-devel-custom-op -f tensorflow_serving/tools/docker/Dockerfile .
You can now use $USER/tensorflow-serving to serve your image following the Docker instructions
Upvotes: 1