Reputation: 327
I have a satellite GeoTIFF Image and a corresponding OSM file with only the highways. I want to convert the longitude latitude value in the OSM file to the pixels and want to highlight highway on the satellite image.
I have tried several methods that are explained on StackExchange. But I get the negative and same pixel value for every longitude and latitude values. Could somebody explain, what am I missing?
Here is the information of the image that I have gathered using OTB application.
Here is the code that i am using.
from osgeo import gdal, osr
import numpy as np
import xml.etree.ElementTree as xml
src_filename = 'image.tif'
dst_filename = 'foo.tiff'
def readLongLat(path):
lonlatList = []
latlongtuple = ()
root = xml.parse(path).getroot()
for i in root:
if i.tag == "node":
latlong = []
lat = float(i.attrib["lat"])
long = float(i.attrib["lon"])
latlong.append(lat)
latlong.append(long)
lonlatList.append(latlong)
return lonlatList
# Opens source dataset
src_ds = gdal.Open(src_filename)
format = "GTiff"
driver = gdal.GetDriverByName(format)
# Open destination dataset
dst_ds = driver.CreateCopy(dst_filename, src_ds, 0)
# Get raster projection
epsg = 4269 # http://spatialreference.org/ref/sr-org/lambert_conformal_conic_2sp/
srs = osr.SpatialReference()
srs.ImportFromEPSG(epsg)
# Make WGS84 lon lat coordinate system
world_sr = osr.SpatialReference()
world_sr.SetWellKnownGeogCS('WGS84')
transform = src_ds.GetGeoTransform()
gt = [transform[0],transform[1],0,transform[3],0,-transform[5]]
#Reading the osm file
lonlat = readLongLat("highways.osm")
# Transform lon lats into XY
coord_transform = osr.CoordinateTransformation(world_sr, srs)
newpoints = coord_transform.TransformPoints(lonlat) # list of XYZ tuples
# Make Inverse Geotransform (try:except due to gdal version differences)
try:
success, inverse_gt = gdal.InvGeoTransform(gt)
except:
inverse_gt = gdal.InvGeoTransform(gt)
# [Note 1] Set pixel values
marker_array_r = np.array([[255]], dtype=np.uint8)
marker_array_g = np.array([[0]], dtype=np.uint8)
marker_array_b = np.array([[0]], dtype=np.uint8)
for x,y,z in newpoints:
pix_x = int(inverse_gt[0] + inverse_gt[1] * x + inverse_gt[2] * y)
pix_y = int(inverse_gt[3] + inverse_gt[4] * x + inverse_gt[5] * y)
dst_ds.GetRasterBand(1).WriteArray(marker_array_r, pix_x, pix_y)
dst_ds.GetRasterBand(2).WriteArray(marker_array_g, pix_x, pix_y)
dst_ds.GetRasterBand(3).WriteArray(marker_array_b, pix_x, pix_y)
# Close files
dst_ds = None
src_ds = None
Upvotes: 2
Views: 4441
Reputation: 327
I was able to do that using the library geoio.
import geoio
img = geoio.GeoImage(src_filename)
pix_x, pix_y = img.proj_to_raster(lon,lat)
Upvotes: 0
Reputation: 2133
Something I have tried recently is using the xarray
module. I think of xarray
as a hybrid between pandas
and numpy
that allows you to store information as an array but access it using simply .sel
requests. Docs here.
UPDATE: Seems as if rasterio
and xarray
are required to be installed for the below method to work. See link.
It is a much simpler way of translating a GeoTiff file to a user-friendly array. See my example below:
import xarray as xr
ds = xr.open_rasterio("/path/to/image.tif")
# Insert your lat/lon/band below to extract corresponding pixel value
ds.sel(band=2, lat=19.9, lon=39.5, method='nearest').values
>>> [10.3]
This does not answer your question directly, but may help you identify a different (and probably simpler) approach that I've recently switched to.
Note: obviously care needs to be taken to ensure that your lat/lon pairs are in the same coordinate system as the GeoTiff file, but I think you're handling that anyway.
Upvotes: 1