Reputation: 2285
I have a pandas dataframe and one of the columns is time represented as the epoch time. The dataframe looks like this:
0 1539340322842
1 1539340426841
2 1539340438482
3 1539340485658
4 1539340495920
Name: Time, dtype: int64
I tried this
df["local_time"] = df.epoch_time.dt.tz_localize("UTC")
but this doesn't give me the result in local time. This is the result of the above operation:
local_time
0 1970-01-01 00:25:39.340322842+00:00
1 1970-01-01 00:25:39.340426841+00:00
2 1970-01-01 00:25:39.340438482+00:00
3 1970-01-01 00:25:39.340485658+00:00
4 1970-01-01 00:25:39.340495920+00:00
The other thing that gave me the result I want is this:
def convert_time(x):
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(x/1000))
df["local_time"] = df["epoch_time"].apply(convert_time)
Is there anyway that I can vectorize the above operation to get the datetime in the format I want?
Upvotes: 1
Views: 246
Reputation: 13255
IIUC, I think you need pandas to_datetime
with units='s'
:
pd.to_datetime(df.Time/1000,unit='s')
0 2018-10-12 10:32:02.842000008
1 2018-10-12 10:33:46.841000080
2 2018-10-12 10:33:58.482000113
3 2018-10-12 10:34:45.657999992
4 2018-10-12 10:34:55.920000076
Name: Time, dtype: datetime64[ns]
Or using astype
as:
((df.Time)/1000).astype("datetime64[s]")
0 2018-10-12 10:32:02
1 2018-10-12 10:33:46
2 2018-10-12 10:33:58
3 2018-10-12 10:34:45
4 2018-10-12 10:34:55
Name: Time, dtype: datetime64[ns]
Or
pd.to_datetime(df.Time/1000,unit='s',utc=True)
0 2018-10-12 10:32:02.842000008+00:00
1 2018-10-12 10:33:46.841000080+00:00
2 2018-10-12 10:33:58.482000113+00:00
3 2018-10-12 10:34:45.657999992+00:00
4 2018-10-12 10:34:55.920000076+00:00
Name: Time, dtype: datetime64[ns, UTC]
Since 'Asia/Kolkata'
is 05:30:00
ahead just add Timedelta
:
pd.to_datetime(df.Time/1000,unit='s')+pd.Timedelta("05:30:00")
0 2018-10-12 16:02:02.842000008
1 2018-10-12 16:03:46.841000080
2 2018-10-12 16:03:58.482000113
3 2018-10-12 16:04:45.657999992
4 2018-10-12 16:04:55.920000076
Name: Time, dtype: datetime64[ns]
Upvotes: 1