Reputation: 310
Consider following code
import numpy as np
from skimage import measure
def mse(x, y):
return np.mean(np.square(x - y))
def psnr(x, y):
return 10 * np.log10(255 ** 2 / mse(x, y))
x = (np.random.rand(512, 512) * 255).astype(np.uint8)
y = (np.random.rand(512, 512) * 255).astype(np.uint8)
print(type(x))
print('MSE (np)\t', mse(x, y))
print('MSE (sk)\t', measure.compare_mse(x, y))
print('PSNR(np)\t', psnr(x, y))
print('PSNR(sk)\t', measure.compare_psnr(x, y))
print('PSNR(dr)\t', measure.compare_psnr(x, y, data_range=255))
It produce (may vary due to random):
MSE (np) 105.4649887084961
MSE (sk) 10802.859519958496
PSNR(np) 27.899720503741783
PSNR(sk) 7.7954163229186815
PSNR(dr) 7.7954163229186815
which is very puzzling.
The mean-squre error
is extrodanry high compare to vanilla numpy implementation.
The x
and y
in the code is to mimic an ordinary image with 8-bit integer data depth.
Dig into the github of skimage:
def _as_floats(im1, im2):
"""Promote im1, im2 to nearest appropriate floating point precision."""
float_type = np.result_type(im1.dtype, im2.dtype, np.float32)
im1 = np.asarray(im1, dtype=float_type)
im2 = np.asarray(im2, dtype=float_type)
return im1, im2
def compare_mse(im1, im2):
"""Compute the mean-squared error between two images.
Parameters
----------
im1, im2 : ndarray
Image. Any dimensionality.
Returns
-------
mse : float
The mean-squared error (MSE) metric.
"""
_assert_compatible(im1, im2)
im1, im2 = _as_floats(im1, im2)
return np.mean(np.square(im1 - im2), dtype=np.float64)
It cast the image to float32 and re-cast to float64 again then to compute MSE
.
Dose this approach contribute to the skyrocketing high MSE
value showed above?
Upvotes: 1
Views: 785
Reputation: 114841
Your MSE function is the one that is miscalculating the value. The calculation np.square(x - y)
is done with the data types of the inputs x
and y
, which is np.uint8
in this case. If any of the squared differences exceed 255, they will "wrap around", e.g.
In [37]: a = np.array([2, 3, 225, 0], dtype=np.uint8)
In [38]: b = np.array([3, 2, 0, 65], dtype=np.uint8)
You can already see problems in the subtraction:
In [39]: a - b
Out[39]: array([255, 1, 225, 191], dtype=uint8)
Now square those, and more problems are seen:
In [40]: np.square(a - b)
Out[40]: array([ 1, 1, 193, 129], dtype=uint8)
If you convert the inputs to floating point before calling your function, it agrees with the skimage
function:
In [41]: mse(x.astype(float), y.astype(float))
Out[41]: 10836.0170211792
In [42]: measure.compare_mse(x, y)
Out[42]: 10836.0170211792
Upvotes: 3