Reputation: 6006
I've a Keras model that when I fit fails with this error
> kerasInput = Input(shape=(None, 47))
> LSTM(..)(kerasInput)
...
> model.fit(realInput, ...)
ValueError: Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (10842, 1)
When looking at my input I found it has a shape of (10842, 1)
but for each row it's actually a list of list. I can verify with
> pd.DataFrame(realInput[0]).shape
(260, 47)
How I could correct my input shape?
When trying with keras Reshape
layer, the creation of the model fails with:
Model inputs must come from `keras.layers.Input` (thus holding past layer metadata), they cannot be the output of a previous non-Input layer. Here, a tensor specified as input to your model was not an Input tensor, it was generated by layer reshape_8.
Note that input tensors are instantiated via `tensor = keras.layers.Input(shape)`.
The tensor that caused the issue was: reshape_8/Reshape:0
Upvotes: 1
Views: 6100
Reputation: 899
As I said before in the comments. You will need to make sure to reshape your data to match what LSTM expects to receive and also make sure the input_shape is correctly set.
I found this post quite helpful when I struggled with inputting to an LSTM layer. I hope it helps you too : Reshape input for LSTM
Upvotes: 1
Reputation: 1494
You can use numpy.expand_dims method to convert the shape to 3D.
import numpy as np
np.expand_dims(realInput,axis=0)
Reshape layer keras
Use the third parameter as 1
# Something Similar to this
X_train = np.reshape(X_train,(X_train.shape[0],X_train.shape[1],1))
Edit: Added np.reshape method
Refer this repository: https://github.com/NilanshBansal/Stock_Price_Prediction/blob/master/Stock_Price_Prediction_20_days_later_4_LSTM.ipynb
Upvotes: 4