Reputation: 1
I'm trying to implement an echo TCP server as a loadable kernel module. Should I use sock_create, or sock_create_kern?
Should I use accept, or kernel_accept?
I mean it does make sense that I should use kernel_accept for example; but I don't know why. Can't I use normal sockets in the kernel?
Upvotes: 0
Views: 2191
Reputation: 802
In short sockets are just a mechanism that enable two processes to talk, localy or remotely.
If you want to send some data from kernel to userspace you have to use kernel sockets sock_create_kern()
with it's family of functions.
What would be the benefit of TCP echo server as kernel module?
It makes sense only if your TCP server provides data which is otherwise not accessible from userspace, e.g. read some post-mortem NVRAM which you can't read normally and to send it to rsyslog
via socket.
Upvotes: 0
Reputation: 39386
The problem is, you are trying to shoehorn an user space application into the kernel.
Sockets (and files and so on) are things the kernel provides to userspace applications via the kernel-userspace API/ABI. Some, but not all, also have an in-kernel callable, for cases when another kernel thingy wishes to use something provided to userspace.
Let's look at the Linux kernel implementation of the socket()
or accept()
syscalls, in net/socket.c in the kernel sources; look for SYSCALL_DEFINE3(socket,
and SYSCALL_DEFINE3(accept,
, SYSCALL_DEFINE4(recv,
, and so on.
(I recommend you use e.g. Elixir Cross Referencer to find specific identifiers in the Linux kernel sources, then look up the actual code in one of the official kernel Git trees online; that's what I do, anyway.)
Note how pointer arguments have a __user
qualifier: this means the data pointed to must reside in user space, and that the functions will eventually use copy_from_user()
/copy_to_user()
to retrieve or set the data. Furthermore, the operations access the file descriptor table, which is part of the process context: something that normally only exist for userspace processes.
Essentially, this means your kernel module must create an userspace "process" (enough of one to satisfy the requirements of crossing the userspace-kernel boundary when using kernel interfaces) to "hold" the memory and file descriptors, at minimum. It is a lot of work, and in the end, it won't be any more performant than an userspace application would be. (Linux kernel developers have worked on this for literally decades. There are some proprietary operating systems where doing stuff in "kernel space" may be faster, but that is not so in Linux. The cost to do things in userspace is some context switches, and possibly some memory copies (for the transferred data).)
In particular, the TCP/IP and UDP/IP interfaces (see e.g. net/ipv4/udp.c for UDP/IPv4) do not seem to have any interface for kernel-side buffers (other than directly accessing the rx/tx socket buffers, which are in kernel memory).
You have probably heard of TUX web server, a subsystem patch to the Linux kernel by Ingo Molnár. Even that is not a "kernel module server", but more like a subsystem that an userspace process can use to implement a server that runs mostly in kernel space.
The idea of a kernel module that provides a TCP/IP and/or UDP/IP server, is simply like trying to use a hammer to drive in screws. It will work, after a fashion, but the results won't be pretty.
However, for the particular case of an echo server, it just might be possible to bolt it on top of IPv4 (see net/ipv4/) and/or IPv6 (see net/ipv6/) similar to ICMP packets (net/ipv4/icmp.c, net/ipv6/icmp.c). I would consider this route if and only if you intend to specialize in kernel-side networking stuff, as otherwise everything you'd learn doing this is very specialized and not that useful in practice.
If you need to implement something kernel-side for an exercise or something, I'd recommend steering away from "application"-type ideas (services or similar).
Instead, I would warmly recommend developing a character device driver, possibly implementing some kind of inter-process communications layer, preferably bus-style (i.e., one sender, any number of recipients). Something like that has a number of actual real-world use cases (both hardware drivers, as well as stranger things like kdbus-type stuff), so anything you'd learn doing that would be real-world applicable.
(In fact, an echo character device -- which simply outputs whatever is written to it -- is an excellent first target. Although LDD3 is for Linux kernel 2.6.10, it should be an excellent read for anyone diving into Linux kernel development. If you use a more recent kernel, just remember that the example code might not compile as-is, and you might have to do some research wrt. Linux kernel Git repos and/or a kernel source cross referencer like Elixir above.)
Upvotes: 1