Reputation: 614
I have the following code:
#include <RcppEigen.h>
using namespace Rcpp;
using Eigen::MatrixXd;
using Eigen::VectorXd;
using Eigen::Lower;
using Eigen::Map;
// fills passed dense objects with unit normal random variables
template <typename Derived>
void fillUnitNormal(Eigen::DenseBase<Derived>& Z){
int m = Z.rows();
int n = Z.cols();
NumericVector r(m*n);
r = rnorm(m*n, 0, 1); // using vectorization from Rcpp sugar
Map<VectorXd> rvec(as<Map<VectorXd> >(r));
Map<MatrixXd> rmat(rvec.data(), m, n);
Z = rmat;
}
That had been working well for me for some time. However, I realized that if Z is a VectorXd object then the function would fail. What would be the proper way to fill each element of an Eigen object inheriting from class Eigen::DenseBase with a normal(0,1) draw?
Upvotes: 2
Views: 75
Reputation: 26843
One way would be to just std::copy
the random values into Z
. Since Eigen
does not support std::begin()
, I decided to use the raw pointer provided by .data()
. However, that is not available at the Eigen::DenseBase
level. Two levels up in the hierarchy at Eigen::PlainObjectBase
it works, though:
// [[Rcpp::depends(RcppEigen)]]
#include <RcppEigen.h>
// fills passed dense objects with unit normal random variables
template <typename T>
void fillUnitNormal(Eigen::PlainObjectBase<T>& Z){
int m = Z.rows();
int n = Z.cols();
Rcpp::NumericVector r(m*n);
r = Rcpp::rnorm(m*n, 0, 1); // using vectorization from Rcpp sugar
std::copy(std::begin(r), std::end(r), Z.data());
}
// [[Rcpp::export]]
Rcpp::List test(int n) {
Eigen::MatrixXd mat(n, n);
Eigen::VectorXd vec(n);
fillUnitNormal(mat);
fillUnitNormal(vec);
// gives compile time error: fillUnitNormal(Rcpp::NumericVector::create(n));
return Rcpp::List::create(mat, vec);
}
/*** R
test(5)
*/
Upvotes: 2