Reputation: 319
I have the following csv :
field1;field2;field3;field4;field5;field6;field7;field8;field9;field10;field11;field12;
eu;4523;35353;01/09/1999; 741 ; 386 ; 412 ; 86 ; 1.624 ; 1.038 ; 469 ; 117 ;
and I want to convert it to avro. I have created the following avro schema:
{"namespace": "forecast.avro",
"type": "record",
"name": "forecast",
"fields": [
{"name": "field1", "type": "string"},
{"name": "field2", "type": "string"},
{"name": "field3", "type": "string"},
{"name": "field4", "type": "string"},
{"name": "field5", "type": "string"},
{"name": "field6", "type": "string"},
{"name": "field7", "type": "string"},
{"name": "field8", "type": "string"},
{"name": "field9", "type": "string"},
{"name": "field10", "type": "string"},
{"name": "field11", "type": "string"},
{"name": "field12", "type": "null"}
]
}
and my code is the next one:
import avro.schema
from avro.datafile import DataFileReader, DataFileWriter
from avro.io import DatumReader, DatumWriter
import csv
from collections import namedtuple
FORECAST = "forecast.csv"
fields = ("field1", "field2", "field3", "field4", "field5", "field6", "field7", "field8", "field9", "field10", "field11", "field12")
forecastRecord = namedtuple('forecastRecord', fields)
def read_forecast_data(path):
with open(path, 'rU') as data:
data.readline()
reader = csv.reader(data, delimiter = ";")
for row in map(forecastRecord._make, reader):
print(row)
yield row
if __name__=="__main__":
for row in read_forecast_data(FORECAST):
print (row)
break
def parse_schema(path="forecast.avsc"):
with open(path, 'r') as data:
return avro.schema.parse(data.read())
def serialize_records(records, outpath="forecast.avro"):
schema = parse_schema()
with open(outpath, 'w') as out:
writer = DataFileWriter(out, DatumWriter(), schema)
for record in records:
record = dict((f, getattr(record, f)) for f in record._fields)
writer.append(record)
if __name__ == "__main__":
serialize_records(read_forecast_data(FORECAST))
When I run the code i get the error that the datum is not an example of the current schema. I have checked again and again my schema to find any inconsistencies, but till now I have not managed to find any. Could someone help me ?
Upvotes: 6
Views: 11590
Reputation: 1
One more way in example:
import csv
from collections import namedtuple
from fastavro import parse_schema, writer
schema = {
"namespace": "test.avro",
"type": "record",
"name": "test",
"fields": [
{"name": "region", "type": "string"},
{"name": "anzsic_descriptor", "type": "string"},
{"name": "gas", "type": "string"},
{"name": "units", "type": "string"},
{"name": "magnitude", "type": "string"},
{"name": "year", "type": "string"},
{"name": "data_val", "type": "string"}
]
}
fields =
("region","anzsic_descriptor","gas","units","magnitude","year","data_val")
forecastRecord = namedtuple('forecastRecord', fields)
parsed_schema = parse_schema(schema)
lst = []
with open('test.csv', 'r') as data:
data.readline()
reader = csv.reader(data, delimiter=",")
for records in map(forecastRecord._make, reader):
record = dict((f, getattr(records, f)) for f in records._fields)
l.append(record)
with open("users.avro", "wb") as fp:
writer(fp, schema, l)
Upvotes: 0
Reputation: 2074
When I run your code as written I get an error TypeError: Expected 12 arguments, got 13
at for row in map(forecastRecord._make, reader):
because your CSV ends in a ;
and therefore has 13 fields.
Once I remove those trailing ;
s, I can run the example and get the same error about the schema mismatch. The reason is that field12
in your schema is defined as a type of null
but in the data it is a string
type (with value "117"
).
If you change the avsc file to {"name": "field12", "type": "string"}
then it works.
Upvotes: 7