Reputation: 125
The problem
Im trying to capture my desktop with OpenCV and have Tesseract OCR find text and set it as a variable, for example, if I was going to play a game and have the capturing frame over a resource amount, I want it to print that and use it. A perfect example of this is a video by Micheal Reeves where whenever he loses health in a game it shows it and sends it to his Bluetooth enabled airsoft gun to shoot him. So far I have this:
# imports
from PIL import ImageGrab
from PIL import Image
import numpy as np
import pytesseract
import argparse
import cv2
import os
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter("output.avi", fourcc, 5.0, (1366, 768))
while(True):
x = 760
y = 968
ox = 50
oy = 22
# screen capture
img = ImageGrab.grab(bbox=(x, y, x + ox, y + oy))
img_np = np.array(img)
frame = cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
cv2.imshow("Screen", frame)
out.write(frame)
if cv2.waitKey(1) == 0:
break
out.release()
cv2.destroyAllWindows()
it captures real-time and displays it in a window but I have no clue how to make it recognise the text every frame and output it.
any help?
Upvotes: 12
Views: 17691
Reputation: 21
Alright, I was having the same issue as you so I did some research into it and I'm sure that I found the solution! First, you will need these libraries:
Installation:
To install cv2, simply use this in a command line/command prompt: pip install opencv-python
Installing pytesseract is a little bit harder as you also need to pre-install Tesseract which is the program that actually does the ocr reading. First, follow this tutorial on how to install Tesseract. After that, in a command line/command prompt just use the command: pip install pytesseract If you don't install this right you will get an error using the ocr
To install Pillow use the following command in a command-line/command prompt: python -m pip install --upgrade Pillow or python3 -m pip install --upgrade Pillow. The one that uses python works for me
To install NumPy, use the following command in a command-line/command prompt: pip install numpy. Thought it's usually already installed in most python libraries.
Code: This code was made by me and as of right now it works how I want it to and similar to the effect that Michal had. It will take the top left of your screen, take a recorded image of it and show a window display of the image it's currently using OCR to read. Then in the console, it is printing out the text that it read on the screen.
# OCR Screen Scanner
# By Dornu Inene
# Libraries that you show have all installed
import cv2
import numpy as np
import pytesseract
# We only need the ImageGrab class from PIL
from PIL import ImageGrab
# Run forever unless you press Esc
while True:
# This instance will generate an image from
# the point of (115, 143) and (569, 283) in format of (x, y)
cap = ImageGrab.grab(bbox=(115, 143, 569, 283))
# For us to use cv2.imshow we need to convert the image into a numpy array
cap_arr = np.array(cap)
# This isn't really needed for getting the text from a window but
# It will show the image that it is reading it from
# cv2.imshow() shows a window display and it is using the image that we got
# use array as input to image
cv2.imshow("", cap_arr)
# Read the image that was grabbed from ImageGrab.grab using pytesseract.image_to_string
# This is the main thing that will collect the text information from that specific area of the window
text = pytesseract.image_to_string(cap)
# This just removes spaces from the beginning and ends of text
# and makes the the it reads more clean
text = text.strip()
# If any text was translated from the image, print it
if len(text) > 0:
print(text)
# This line will break the while loop when you press Esc
if cv2.waitKey(1) == 27:
break
# This will make sure all windows created from cv2 is destroyed
cv2.destroyAllWindows()
I hope this helped you with what you were looking for, it sure did help me!
Upvotes: 2
Reputation: 14906
It's fairly simple to grab the screen and pass it to tesseract
for OCRing.
The PIL (pillow) library can grab the frames easily on MacOS and Windows. However, this feature has only recently been added for Linux, so the code below works around it not existing. (I'm on Ubuntu 19.10 and my Pillow does not support it).
Essentially the user starts the program with screen-region rectangle co-ordinates. The main loop continually grabs this area of the screen, feeding it to Tesseract. If Tesseract finds any non-whitespace text in that image, it is written to stdout.
Note that this is not a proper Real Time system. There is no guarantee of timeliness, each frame takes as long as it takes. Your machine might get 60 FPS or it might get 6. This will also be greatly influenced by the size of the rectangle your ask it to monitor.
#! /usr/bin/env python3
import sys
import pytesseract
from PIL import Image
# Import ImageGrab if possible, might fail on Linux
try:
from PIL import ImageGrab
use_grab = True
except Exception as ex:
# Some older versions of pillow don't support ImageGrab on Linux
# In which case we will use XLib
if ( sys.platform == 'linux' ):
from Xlib import display, X
use_grab = False
else:
raise ex
def screenGrab( rect ):
""" Given a rectangle, return a PIL Image of that part of the screen.
Handles a Linux installation with and older Pillow by falling-back
to using XLib """
global use_grab
x, y, width, height = rect
if ( use_grab ):
image = PIL.ImageGrab.grab( bbox=[ x, y, x+width, y+height ] )
else:
# ImageGrab can be missing under Linux
dsp = display.Display()
root = dsp.screen().root
raw_image = root.get_image( x, y, width, height, X.ZPixmap, 0xffffffff )
image = Image.frombuffer( "RGB", ( width, height ), raw_image.data, "raw", "BGRX", 0, 1 )
# DEBUG image.save( '/tmp/screen_grab.png', 'PNG' )
return image
### Do some rudimentary command line argument handling
### So the user can speicify the area of the screen to watch
if ( __name__ == "__main__" ):
EXE = sys.argv[0]
del( sys.argv[0] )
# EDIT: catch zero-args
if ( len( sys.argv ) != 4 or sys.argv[0] in ( '--help', '-h', '-?', '/?' ) ): # some minor help
sys.stderr.write( EXE + ": monitors section of screen for text\n" )
sys.stderr.write( EXE + ": Give x, y, width, height as arguments\n" )
sys.exit( 1 )
# TODO - add error checking
x = int( sys.argv[0] )
y = int( sys.argv[1] )
width = int( sys.argv[2] )
height = int( sys.argv[3] )
# Area of screen to monitor
screen_rect = [ x, y, width, height ]
print( EXE + ": watching " + str( screen_rect ) )
### Loop forever, monitoring the user-specified rectangle of the screen
while ( True ):
image = screenGrab( screen_rect ) # Grab the area of the screen
text = pytesseract.image_to_string( image ) # OCR the image
# IF the OCR found anything, write it to stdout.
text = text.strip()
if ( len( text ) > 0 ):
print( text )
This answer was cobbled together from various other answers on SO.
If you use this answer for anything regularly, it would be worth adding a rate-limiter to save some CPU. It could probably sleep for half a second every loop.
Upvotes: 4
Reputation: 835
Tesseract is a single-use command-line application using files for input and output, meaning every OCR call creates a new process and initializes a new Tesseract engine, which includes reading multi-megabyte data files from disk. Its suitability as a real-time OCR engine will depend on the exact use case—more pixels requires more time—and which parameters are provided to tune the OCR engine. Some experimentation may ultimately be required to tune the engine to the exact scenario, but also expect the time required to OCR for a frame may exceed the frame time and a reduction in the frequency of OCR execution may be required, i.e. performing OCR at 10-20 FPS rather than 60+ FPS the game may be running at.
In my experience, a reasonably complex document in a 2200x1700px image can take anywhere from 0.5s to 2s using the english fast model with 4 cores (the default) on an aging CPU, however this "complex document" represents the worst-case scenario and makes no assumptions on the structure of the text being recognized. For many scenarios, such as extracting data from a game screen, assumptions can be made to implement a few optimizations and speed up OCR:
-l
option to specify different models and the --testdata-dir
option to specify the directory containing your model files. You can download multiple models and rename the files to "eng_fast.traineddata", "eng_best.traineddata", etc.--psm
parameter to prevent page segmentation not required for your scenario. --psm 7
may be the best option for singular pieces of information, but play around with different values and find which works best.-c tessedit_char_whitelist='1234567890'
.pytesseract is the best way to get started with implementing Tesseract, and the library can handle image input directly (although it saves the image to a file before passing to Tesseract) and pass the resulting text back using image_to_string(...)
.
import pytesseract
# Capture frame...
# If the frame requires cropping:
frame = frame[y:y + h, x:x + w]
# Perform OCR
text = pytesseract.image_to_string(frame, lang="eng_fast" config="--psm 7")
# Process the result
health = int(text)
Upvotes: 2