Reputation: 73
I'm making a CNN in Keras. But I have a problem in making Keras model. Here's my code:
x = Input(shape=(256,256,1))
for i in range(16):
u = int(16 * 2 ** (i//4))
x = BatchNormalization()(x)
x1 = Conv2D(u, kernel_size=(1,1), strides=(1,1), activation='relu')(x)
x1 = MaxPooling2D(pool_size=(3,3), strides=(1,1))(x1)
x2 = Conv2D(u, kernel_size=(2,2), strides=(1,1), activation='relu')(x)
x2 = MaxPooling2D(pool_size=(2,2), strides=(1,1))(x2)
x3 = Conv2D(u, kernel_size=(3,3), strides=(1,1), activation='relu')(x)
x3 = MaxPooling2D(pool_size=(1,1), strides=(1,1))(x3)
x = multiply([x1, x2, x3])
#x = Dropout(0.45)(x)
x = MaxPooling2D(pool_size=(3,3), strides=(1,1))(x)
out = BatchNormalization()(x)
model = tf.keras.models.Model(inputs=x, outputs=out)
and I got the following error:
AttributeError Traceback (most recent call last)
<ipython-input-99-630b3ef0b15f> in <module>()
13 x = MaxPooling2D(pool_size=(3,3), strides=(1,1))(x)
14 out = BatchNormalization()(x)
---> 15 model = tf.keras.models.Model(inputs=x, outputs=out)
...
AttributeError: 'Model' object has no attribute '_name'
Upvotes: 0
Views: 2399
Reputation: 33410
The problem is that you are assigning other Tensors to x
after defining it as Input tensor. Therefore, it can't be used as the input of the model, i.e. inputs=x
. To resolve this with minimal modifications simply store x
in another variable after defining it as Input tensor:
x = Input(shape=(256,256,1))
inp = x
# the rest is the same...
model = tf.keras.models.Model(inputs=inp, outputs=out) # pass `inp` as inputs
Upvotes: 1