Reputation: 105
Today I try to use fit_generator function for binary classifying plain black and white image but it gives me only 50% accuracy
This is just my coding exercise but I think accuracy should reach 100%. So I am curious what is my mistake.
I do all the code in Google-colaboratory.
here is my code.
Set up
import numpy as np
import random
from matplotlib import pyplot as plt
img_height = 150
img_width = 150
batch_size = 8
class MyDataset(object):
def __init__(self):
placeholder = 0
def generator(self):
is_black = True
X, y = [], []
while True:
if is_black:
img = np.full((img_height, img_width, 3), 255)
else:
img = np.zeros((img_height, img_width, 3))
img = img / 255.
X.append(img)
y.append(is_black)
is_black = not is_black
if len(X) >= batch_size:
c = list(zip(X, y))
random.shuffle(c)
X, y = zip(*c)
yield np.asarray(X, dtype=np.float32), np.asarray(y, dtype=np.float32)
X, y = [], []
dataset = MyDataset()
sample_gen = dataset.generator()
Visualize data
X, y = next(sample_gen)
label_dict = {0:'black', 1:'white'}
sample_size = len(X)
fig = plt.figure(figsize=(16, 8))
for sample in range(sample_size):
img = X[sample]
lbl = label_dict[y[sample]]
fig.add_subplot(2, sample_size//2, sample + 1)
f = plt.imshow(img)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.title(lbl)
plt.show()
Create model
I create a small size model. It has only 9 parameters.
import tensorflow as tf
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(filters=1, kernel_size=(1,1), padding='same',
activation='relu', input_shape=(img_height, img_width, 3)))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(img_height//2,img_height//2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1, activation='softmax'))
model.summary()
Train model
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit_generator(
sample_gen,
steps_per_epoch = 100//batch_size ,
epochs=300)
Result
After 200+ epochs, accuracy still be 0.5.
Epoch 218/300
12/12 [==============================] - 0s 8ms/step - loss: 7.9712 - acc: 0.5000
Epoch 219/300
12/12 [==============================] - 0s 8ms/step - loss: 7.9712 - acc: 0.5000
Epoch 220/300
12/12 [==============================] - 0s 8ms/step - loss: 7.9712 - acc: 0.5000
Epoch 221/300
12/12 [==============================] - 0s 9ms/step - loss: 7.9712 - acc: 0.5000
Epoch 222/300
12/12 [==============================] - 0s 8ms/step - loss: 7.9712 - acc: 0.5000
I already studied a bit about CNN and I am beginner at Keras.
Upvotes: 0
Views: 1488
Reputation: 1363
The problem is at the end of your model definition, specificaly here:
model.add(tf.keras.layers.Dense(1, activation='softmax'))
By applying softmax you -- by definition -- enforce it's outputs to sum to one. The only way how a single value can comply, is to become 1 itself. Therefore, no information is propagated through.
To fix it, turn the softmax into a logistic sigmoid, e.g.:
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
This way, you also can interpret the output of your model as the posterior probability that the data comes from class 1
.
Upvotes: 1